Anti MB21D1 pAb (ATL-HPA031700 w/enhanced validation)
Atlas Antibodies
- Catalog No.:
- ATL-HPA031700-25
- Shipping:
- Calculated at Checkout
$423.00
Gene Name: MB21D1
Alternative Gene Name: C6orf150
Isotype: IgG
Interspecies mouse/rat: ENSMUSG00000032344: 75%, ENSRNOG00000046191: 51%
Entrez Gene ID: 115004
Uniprot ID: Q8N884
Buffer: 40% glycerol and PBS (pH 7.2). 0.02% sodium azide is added as preservative.
Storage Temperature: Store at +4°C for short term storage. Long time storage is recommended at -20°C.
| Product Specifications | |
| Application | WB, IHC |
| Reactivity | Human |
| Clonality | Polyclonal |
| Host | Rabbit |
| Immunogen | RKQLRLKPFYLVPKHAKEGNGFQEETWRLSFSHIEKEILNNHGKSKTCCENKEEKCCRKDCLKLMKYLLEQLKERF |
| Gene Sequence | RKQLRLKPFYLVPKHAKEGNGFQEETWRLSFSHIEKEILNNHGKSKTCCENKEEKCCRKDCLKLMKYLLEQLKERF |
| Gene ID - Mouse | ENSMUSG00000032344 |
| Gene ID - Rat | ENSRNOG00000046191 |
| Buffer | 40% glycerol and PBS (pH 7.2). 0.02% sodium azide is added as preservative. |
| Documents & Links for Anti MB21D1 pAb (ATL-HPA031700 w/enhanced validation) | |
| Datasheet | Anti MB21D1 pAb (ATL-HPA031700 w/enhanced validation) Datasheet (External Link) |
| Vendor Page | Anti MB21D1 pAb (ATL-HPA031700 w/enhanced validation) at Atlas Antibodies |
| Documents & Links for Anti MB21D1 pAb (ATL-HPA031700 w/enhanced validation) | |
| Datasheet | Anti MB21D1 pAb (ATL-HPA031700 w/enhanced validation) Datasheet (External Link) |
| Vendor Page | Anti MB21D1 pAb (ATL-HPA031700 w/enhanced validation) |
| Citations for Anti MB21D1 pAb (ATL-HPA031700 w/enhanced validation) – 24 Found |
| Hansen, Kathrine; Prabakaran, Thaneas; Laustsen, Anders; Jørgensen, Sofie E; Rahbæk, Stine H; Jensen, Søren B; Nielsen, Rikke; Leber, Jess H; Decker, Thomas; Horan, Kristy A; Jakobsen, Martin R; Paludan, Søren R. Listeria monocytogenes induces IFNβ expression through an IFI16-, cGAS- and STING-dependent pathway. The Embo Journal. 2014;33(15):1654-66. PubMed |
| Zhang, Guigen; Chan, Baca; Samarina, Naira; Abere, Bizunesh; Weidner-Glunde, Magdalena; Buch, Anna; Pich, Andreas; Brinkmann, Melanie M; Schulz, Thomas F. Cytoplasmic isoforms of Kaposi sarcoma herpesvirus LANA recruit and antagonize the innate immune DNA sensor cGAS. Proceedings Of The National Academy Of Sciences Of The United States Of America. 2016;113(8):E1034-43. PubMed |
| Jønsson, K L; Laustsen, A; Krapp, C; Skipper, K A; Thavachelvam, K; Hotter, D; Egedal, J H; Kjolby, M; Mohammadi, P; Prabakaran, T; Sørensen, L K; Sun, C; Jensen, S B; Holm, C K; Lebbink, R J; Johannsen, M; Nyegaard, M; Mikkelsen, J G; Kirchhoff, F; Paludan, S R; Jakobsen, M R. IFI16 is required for DNA sensing in human macrophages by promoting production and function of cGAMP. Nature Communications. 2017;8( 28186168):14391. PubMed |
| Almine, Jessica F; O'Hare, Craig A J; Dunphy, Gillian; Haga, Ismar R; Naik, Rangeetha J; Atrih, Abdelmadjid; Connolly, Dympna J; Taylor, Jordan; Kelsall, Ian R; Bowie, Andrew G; Beard, Philippa M; Unterholzner, Leonie. IFI16 and cGAS cooperate in the activation of STING during DNA sensing in human keratinocytes. Nature Communications. 2017;8( 28194029):14392. PubMed |
| Sun, Bo; Sundström, Karin B; Chew, Jun Jie; Bist, Pradeep; Gan, Esther S; Tan, Hwee Cheng; Goh, Kenneth C; Chawla, Tanu; Tang, Choon Kit; Ooi, Eng Eong. Dengue virus activates cGAS through the release of mitochondrial DNA. Scientific Reports. 2017;7(1):3594. PubMed |
| Kerur, Nagaraj; Fukuda, Shinichi; Banerjee, Daipayan; Kim, Younghee; Fu, Dongxu; Apicella, Ivana; Varshney, Akhil; Yasuma, Reo; Fowler, Benjamin J; Baghdasaryan, Elmira; Marion, Kenneth M; Huang, Xiwen; Yasuma, Tetsuhiro; Hirano, Yoshio; Serbulea, Vlad; Ambati, Meenakshi; Ambati, Vidya L; Kajiwara, Yuji; Ambati, Kameshwari; Hirahara, Shuichiro; Bastos-Carvalho, Ana; Ogura, Yuichiro; Terasaki, Hiroko; Oshika, Tetsuro; Kim, Kyung Bo; Hinton, David R; Leitinger, Norbert; Cambier, John C; Buxbaum, Joseph D; Kenney, M Cristina; Jazwinski, S Michal; Nagai, Hiroshi; Hara, Isao; West, A Phillip; Fitzgerald, Katherine A; Sadda, SriniVas R; Gelfand, Bradley D; Ambati, Jayakrishna. cGAS drives noncanonical-inflammasome activation in age-related macular degeneration. Nature Medicine. 2018;24(1):50-61. PubMed |
| Dunphy, Gillian; Flannery, Sinéad M; Almine, Jessica F; Connolly, Dympna J; Paulus, Christina; Jønsson, Kasper L; Jakobsen, Martin R; Nevels, Michael M; Bowie, Andrew G; Unterholzner, Leonie. Non-canonical Activation of the DNA Sensing Adaptor STING by ATM and IFI16 Mediates NF-κB Signaling after Nuclear DNA Damage. Molecular Cell. 2018;71(5):745-760.e5. PubMed |
| Bakhoum, Mathieu F; Francis, Jasmine H; Agustinus, Albert; Earlie, Ethan M; Di Bona, Melody; Abramson, David H; Duran, Mercedes; Masilionis, Ignas; Molina, Elsa; Shoushtari, Alexander N; Goldbaum, Michael H; Mischel, Paul S; Bakhoum, Samuel F; Laughney, Ashley M. Loss of polycomb repressive complex 1 activity and chromosomal instability drive uveal melanoma progression. Nature Communications. 2021;12(1):5402. PubMed |
| Liu, Xiao-Na; Li, Li-Wei; Gao, Fei; Jiang, Yi-Feng; Yuan, Wan-Zhe; Li, Guo-Xin; Yu, Ling-Xue; Zhou, Yan-Jun; Tong, Guang-Zhi; Zhao, Kuan. cGAS Restricts PRRSV Replication by Sensing the mtDNA to Increase the cGAMP Activity. Frontiers In Immunology. 13( 35558078):887054. PubMed |
| Schoggins, John W; MacDuff, Donna A; Imanaka, Naoko; Gainey, Maria D; Shrestha, Bimmi; Eitson, Jennifer L; Mar, Katrina B; Richardson, R Blake; Ratushny, Alexander V; Litvak, Vladimir; Dabelic, Rea; Manicassamy, Balaji; Aitchison, John D; Aderem, Alan; Elliott, Richard M; García-Sastre, Adolfo; Racaniello, Vincent; Snijder, Eric J; Yokoyama, Wayne M; Diamond, Michael S; Virgin, Herbert W; Rice, Charles M. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature. 2014;505(7485):691-5. PubMed |
| Berg, Randi K; Rahbek, Stine H; Kofod-Olsen, Emil; Holm, Christian K; Melchjorsen, Jesper; Jensen, David G; Hansen, Anne Louise; Jørgensen, Louise B; Ostergaard, Lars; Tolstrup, Martin; Larsen, Carsten S; Paludan, Søren R; Jakobsen, Martin R; Mogensen, Trine H. T cells detect intracellular DNA but fail to induce type I IFN responses: implications for restriction of HIV replication. Plos One. 9(1):e84513. PubMed |
| Hasan, Maroof; Fermaintt, Charles S; Gao, Ningguo; Sakai, Tomomi; Miyazaki, Takuya; Jiang, Sixin; Li, Quan-Zhen; Atkinson, John P; Morse, Herbert C 3rd; Lehrman, Mark A; Yan, Nan. Cytosolic Nuclease TREX1 Regulates Oligosaccharyltransferase Activity Independent of Nuclease Activity to Suppress Immune Activation. Immunity. 2015;43(3):463-74. PubMed |
| Cerboni, Silvia; Jeremiah, Nadia; Gentili, Matteo; Gehrmann, Ulf; Conrad, Cécile; Stolzenberg, Marie-Claude; Picard, Capucine; Neven, Bénédicte; Fischer, Alain; Amigorena, Sébastian; Rieux-Laucat, Frédéric; Manel, Nicolas. Intrinsic antiproliferative activity of the innate sensor STING in T lymphocytes. The Journal Of Experimental Medicine. 2017;214(6):1769-1785. PubMed |
| Verrier, Eloi R; Yim, Seung-Ae; Heydmann, Laura; El Saghire, Houssein; Bach, Charlotte; Turon-Lagot, Vincent; Mailly, Laurent; Durand, Sarah C; Lucifora, Julie; Durantel, David; Pessaux, Patrick; Manel, Nicolas; Hirsch, Ivan; Zeisel, Mirjam B; Pochet, Nathalie; Schuster, Catherine; Baumert, Thomas F. Hepatitis B Virus Evasion From Cyclic Guanosine Monophosphate-Adenosine Monophosphate Synthase Sensing in Human Hepatocytes. Hepatology (Baltimore, Md.). 2018;68(5):1695-1709. PubMed |
| Lum, Krystal K; Song, Bokai; Federspiel, Joel D; Diner, Benjamin A; Howard, Timothy; Cristea, Ileana M. Interactome and Proteome Dynamics Uncover Immune Modulatory Associations of the Pathogen Sensing Factor cGAS. Cell Systems. 2018;7(6):627-642.e6. PubMed |
| Fenerty, Kathleen E; Padget, Michelle; Wolfson, Benjamin; Gameiro, Sofia R; Su, Zhen; Lee, John H; Rabizadeh, Shahrooz; Soon-Shiong, Patrick; Hodge, James W. Immunotherapy utilizing the combination of natural killer- and antibody dependent cellular cytotoxicity (ADCC)-mediating agents with poly (ADP-ribose) polymerase (PARP) inhibition. Journal For Immunotherapy Of Cancer. 2018;6(1):133. PubMed |
| Riedl, William; Acharya, Dhiraj; Lee, Jung-Hyun; Liu, Guanqun; Serman, Taryn; Chiang, Cindy; Chan, Ying Kai; Diamond, Michael S; Gack, Michaela U. Zika Virus NS3 Mimics a Cellular 14-3-3-Binding Motif to Antagonize RIG-I- and MDA5-Mediated Innate Immunity. Cell Host & Microbe. 2019;26(4):493-503.e6. PubMed |
| Lo Cigno, Irene; Calati, Federica; Borgogna, Cinzia; Zevini, Alessandra; Albertini, Silvia; Martuscelli, Licia; De Andrea, Marco; Hiscott, John; Landolfo, Santo; Gariglio, Marisa. Human Papillomavirus E7 Oncoprotein Subverts Host Innate Immunity via SUV39H1-Mediated Epigenetic Silencing of Immune Sensor Genes. Journal Of Virology. 2020;94(4) PubMed |
| Volkman, Hannah E; Cambier, Stephanie; Gray, Elizabeth E; Stetson, Daniel B. Tight nuclear tethering of cGAS is essential for preventing autoreactivity. Elife. 2019;8( 31808743) PubMed |
| Vasudevan, Anand; Baruah, Prasamit S; Smith, Joan C; Wang, Zihua; Sayles, Nicole M; Andrews, Peter; Kendall, Jude; Leu, Justin; Chunduri, Narendra Kumar; Levy, Dan; Wigler, Michael; Storchová, Zuzana; Sheltzer, Jason M. Single-Chromosomal Gains Can Function as Metastasis Suppressors and Promoters in Colon Cancer. Developmental Cell. 2020;52(4):413-428.e6. PubMed |
| Lv, Mengze; Chen, Meixia; Zhang, Rui; Zhang, Wen; Wang, Chenguang; Zhang, Yan; Wei, Xiaoming; Guan, Yukun; Liu, Jiejie; Feng, Kaichao; Jing, Miao; Wang, Xurui; Liu, Yun-Cai; Mei, Qian; Han, Weidong; Jiang, Zhengfan. Manganese is critical for antitumor immune responses via cGAS-STING and improves the efficacy of clinical immunotherapy. Cell Research. 2020;30(11):966-979. PubMed |
| Neufeldt, Christopher J; Cerikan, Berati; Cortese, Mirko; Frankish, Jamie; Lee, Ji-Young; Plociennikowska, Agnieszka; Heigwer, Florian; Prasad, Vibhu; Joecks, Sebastian; Burkart, Sandy S; Zander, David Y; Subramanian, Baskaran; Gimi, Rayomand; Padmanabhan, Seetharamaiyer; Iyer, Radhakrishnan; Gendarme, Mathieu; El Debs, Bachir; Halama, Niels; Merle, Uta; Boutros, Michael; Binder, Marco; Bartenschlager, Ralf. SARS-CoV-2 infection induces a pro-inflammatory cytokine response through cGAS-STING and NF-κB. Communications Biology. 2022;5(1):45. PubMed |
| Gusho, Elona; Laimins, Laimonis A. Human papillomaviruses sensitize cells to DNA damage induced apoptosis by targeting the innate immune sensor cGAS. Plos Pathogens. 2022;18(7):e1010725. PubMed |
| Dixon, Charles R; Malik, Poonam; de Las Heras, Jose I; Saiz-Ros, Natalia; de Lima Alves, Flavia; Tingey, Mark; Gaunt, Eleanor; Richardson, A Christine; Kelly, David A; Goldberg, Martin W; Towers, Greg J; Yang, Weidong; Rappsilber, Juri; Digard, Paul; Schirmer, Eric C. STING nuclear partners contribute to innate immune signaling responses. Iscience. 2021;24(9):103055. PubMed |