SELECTION BY Product / Atelocollagen, Honeycomb Sponge


Atelocollagen, Honeycomb Sponge

 

Honeycomb sponge and Honeycomb disc 96 are sponge shaped type I  atelocollagen scaffolds and have a honeycomb-like porous structure and high pore density. This honeycomb structure enables facile supply of nutrients to cells and easy excretion of waste products.

Application and Features

img-4359-resized.png

 

 atcell05-01.png  atcell04-03.png  atcell04-04.png
 3D Culture  Cell transplantation Sustained release carrier 
  • The honeycomb structure facilitates the access of nutrients to the cultured cells and the removal of waste products from the sponge, allowing cells to proliferate within the sponge.
  • Cells are easily harvested by collagenase treatment.
  • It is biodegradable and suitable for cell transplantation 

Type of collagen

Bovine hide derived atelocollagen

Product name (click for order info) Cat no (click for datasheet) Size
Atelocollagen Honeycomb sponge  KOU-CSH-10 100mg
Atelocollagen Honeycomb Disc 96  KOU-CSH-96 25 Pieces

Frequently Asked Questions

How can I seed cells into Honeycomb sponge?
Please view the datasheet for the product

What percentage of cells attach onto a Honeycomb sponge during culture?
Approximately 20-30% of seeded cells attach onto the Honeycomb sponge, although the type of cell and the seeding method may affect attachment.

How can I harvest cells from a Honeycomb sponge?
Add collagenase to final concentration of 0.1% and incubate at 37°C for approximately half an hour.

Is it possible to prepare sections from a Honeycomb sponge?
Similar to tissue samples, Honeycomb sponge can be fixed and/or embedded in paraffin/OCT compound.

How long does Honeycomb sponge remain at the transplantation site?
We estimate that it remains for approximately a month but the duration depends on the transplantation site.

Is it possible to obtain custom-made Honeycomb sponges that are different in shape and pore size from the off-the-shelf product?
Please contact us as we may be able to produce custom-made products upon your request. You can also cut Honeycomb sponge into smaller pieces with a sharp knife such as a surgical scalpel.

References

Nerve, Muscle,Blood vessels

  • Transplantation of neurons derived from human iPS cells cultured on collagen matrix into guinea-pig cochleae.
    Ishikawa M, Ohnishi H, Skerleva D, Sakamoto T, Yamamoto N, Hotta A, Ito J, Nakagawa T.
    J Tissue Eng Regen Med. 2017 Jun;11(6):1766-1778. PMID: 26205474
  • Secreted Ectodomain of Sialic Acid-Binding Ig-Like Lectin-9 and MCP-1 Synergistically Regenerate Transected Rat Peripheral Nerves by Altering Macrophage Polarity.
    Kano, F., Matsubara, K., Ueda, M., Hibi, H. and Yamamoto, A.
    Stem Cells. 2017 Mar;35(3):641-653. PMID: 27862629
  • p27(Kip1) and p21(Cip1)-independent proliferative inhibition of vascular smooth muscle cells cultured in type-I collagen matrix honeycombs.
    Uchida M, Suzuki S, Suzuki T, Ishii I.
    Microvasc Res. 2016 Jan;103:36-40. PMID: 26522285
  • A 3D nanofibrous hydrogel and collagen sponge scaffold promotes locomotor functional recovery, spinal repair, and neuronal regeneration after complete transection of the spinal cord in adult rats.
    Kaneko A, Matsushita A, Sankai Y.
    Biomed Mater. 2015 Jan 13;10(1):015008. PMID: 25585935
  • Bone marrow stromal cells combined with a honeycomb collagen sponge facilitate neurite elongation in vitro and neural restoration in the hemisected rat spinal cord.
    Ukegawa M, Bhatt K, Hirai T, Kaburagi H, Sotome S, Wakabayashi Y, Ichinose S, Shinomiya K, Okawa A, Enomoto M.
    Cell Transplant. 2015;24(7):1283-97. PMID: 24911956
  • Transplantation of schwann cells differentiated from adipose stem cells improves functional recovery in rat spinal cord injury.
    Zaminy A, Shokrgozar MA, Sadeghi Y, Norouzian M, Heidari MH, Piryaei A.
    Arch Iran Med. 2013 Sep;16(9):533-41. PMID: 23981158
  • Mesenchymal stem cells as an alternative for Schwann cells in rat spinal cord injury.
    Zaminy A, Shokrgozar MA, Sadeghi Y, Noroozian M, Heidari MH, Piryaei A.
    Iran Biomed J. 2013;17(3):113-22. PMID: 23748888
  • Three-Dimensional Geometry of Honeycomb Collagen Promotes Higher Beating Rate of Myocardial Cells in Culture.
    Guo Z, Iku S, Zheng X, Sammons RL, Kuboki Y.
    Artif Organs. 2012 Sep;36(9):816-9. PMID:22497536
  • Correlation between antizyme 1 and differentiation of vascular smooth muscle cells cultured in honeycomb-like type-I collagen matrix.
    Ishii I, Suzuki T, Kaneko H, Uchida M, Suzuki Y, Higashi K, Yagi S, Ariyoshi N, Igarashi K, Kitada M.
    Amino Acids. 2012 Feb;42(2-3):565-75. PMID:21894530
  • Degradation of filamin induces contraction of vascular smooth muscle cells in type-I collagen matrix honeycombs.
    Uchida M, Ishii I, Hirata K, Yamamoto F, Tashiro K, Suzuki T, Nakayama Y, Ariyoshi N, Kitada M.
    Cell Physiol Biochem. 2011;27(6):669-80. PMID:21691085
  • Growth inhibition and differentiation of cultured smooth muscle cells depend on cellular crossbridges across the tubular lumen of type I collagen matrix honeycombs.
    Suzuki T, Ishii I, Kotani A, Masuda M, Hirata K, Ueda M, Ogata T, Sakai T, Ariyoshi N, Kitada M.
    Microvasc Res. 2009 Mar;77(2):143-149. PMID: 18848952
  • The axonal regeneration across a honeycomb collagen sponge applied to the transected spinal cord.
    Fukushima K, Enomoto M, Tomizawa S, Takahashi M, Wakabayashi Y, Itoh S, Kuboki Y, Shinomiya K.
    J Med Dent Sci. 2008 Mar;55(1):71-79. PMID:19845152
  • Highly efficient and feeder-free production of subculturable vascular endothelial cells from primate embryonic stem cells.
    Saeki K, Yogiashi Y, Nakahara M, Nakamura N, Matsuyama S, Koyanagi A, Yagita H, Koyanagi M, Kondo Y, Yuo A.
    J Cell Physiol. 2008 Oct;217(1):261-80. PMID: 18551514
  • Histological and functional analysis of vascular smooth muscle cells in a novel culture system with honeycomb-like structure.
    Ishii I, Tomizawa A, Kawachi H, Suzuki T, Kotani A, Koshushi I, Itoh H, Morisaki N, Bujo H, Saito Y, Ohmori S, Kitada M.
    Atherosclerosis. 2001 Oct;158(2):377-84. PMID: 11583716

Bone, Tooth, Cartilage

  • Three-Dimensional Culture of Cartilage Tissue on Nanogel-Cross-Linked Porous Freeze-Dried Gel Scaffold for Regenerative Cartilage Therapy: A Vibrational Spectroscopy Evaluation.
    Adachi T, Miyamoto N, Imamura H, Yamamoto T, Marin E, Zhu W, Kobara M, Sowa Y, Tahara Y, Kanamura N, Akiyoshi K, Mazda O, Nishimura I, Pezzotti G.
    Int J Mol Sci. 2022 Jul 22;23(15):8099. PMID: 35897669.
  • Inhibition of c-Jun N-terminal kinase signaling promotes osteoblastic differentiation of periodontal ligament stem cells and induces regeneration of periodontal tissues.
    Kaneko H, Hasegawa D, Itoyama T, Yoshida S, Tomokiyo A, Hamano S, Sugii H, Maeda H.
    Arch Oral Biol. 2021 Nov 26;134:105323. PMID: 34896864.
  • Bone regeneration of induced pluripotent stem cells derived from peripheral blood cells in collagen sponge scaffolds.
    Kato H, Watanabe K, Saito A, Onodera S, Azuma T, Takano M.
    J Appl Oral Sci. 2022 Feb 21;30:e20210491. PMID: 35195151.
  • The Role of Buckling Instabilities in the Global and Local Mechanical Response in Porous Collagen Scaffolds.
    Kim, B., Middendorf, J.M., Diamantides, N. et al.
    Exp Mech 62, 1067–1077 (2022).
  • Effects of rice fermented extracts, "Sake Lees", on the functional activity of odontoblast-like cells (KN-3 cells).
    Okamoto K, Kakihara Y, Ohkura N, Tohma A, Washio A, Kitamura C, Noiri Y, Yamamura K, Saeki M.
    Odontology. 2022 Apr;110(2):254-261. PMID: 34498157.
  • Repairing Cartilage with Processed Chondrocyte Constructs: A 6-Month Study Using a Porcine Model.
    Kusanagi A, Blahut EB, Ogura T, Tsuchiya A, Mizuno S.
    Cartilage. 2021 Dec;13(2_suppl):1088S-1101S. PMID: 34763541
  • The influence of chondrocyte source on the manufacturing reproducibility of human tissue engineered cartilage.
    Middendorf JM, Diamantides N, Kim B, Dugopolski C, Kennedy S, Blahut E, Cohen I, Bonassar LJ.
    Acta Biomater. 2021 Sep 1;131:276-285. PMID: 34245892.
  • Assessment and Comparison of the Efficacy of Methotrexate, Prednisolone, Adalimumab, and Tocilizumab on Multipotency of Mesenchymal Stem Cells.
    Liu S, Kiyoi T, Ishida M, Mogi M.
    Front Pharmacol. 2020 Jul 3;11:1004. PMID: 32719606
  • Heterogeneous Matrix Deposition in Human Tissue Engineered Cartilage Changes the Local Shear Modulus and Resistance to Local Construct Buckling.
    Jill M. Middendorf, Caroline Dugopolski, Stephen Kennedy, Eric Blahut, Itai Cohen, Lawrence J. Bonassar.
    Journal of Biomechanics, 2020, 109760.
  • Conditioned media from mesenchymal stromal cells and periodontal ligament fibroblasts under cyclic stretch stimulation promote bone healing in mouse calvarial defects.
    Ogisu K, Fujio M, Tsuchiya S, Tsuboi M, Qi C, Toyama N, Kamio H, Hibi H.
    Cytotherapy. 2020 Oct;22(10):543-551. PMID: 32798177.
  • Stromal cell-derived factor-1 accelerates bone regeneration through multiple regenerative mechanisms.
    Yuji Ando, Jun Ishikawa, Masahito Fujio, Yoshihiro Matsushita, Hirotaka Wakayama, Hideharu Hibi, Akihito Yamamoto.
    Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology,2019.
  • Monocyte chemoattractant protein-1 and secreted ectodomain of sialic acid-binding Ig-like lectin-9 enhance bone regeneration by inducing M2 macrophages.
    Jun Ishikawa, Fumiya Kano, Yuji Ando, Hideharu Hibi, Akihito Yamamoto.
    Journal of Oral and Maxillofacial Surgery, Medicine, and Pathology, 2018.
  • Optimization of Extracellular Matrix Synthesis and Accumulation by Human Articular Chondrocytes in 3-Dimensional Construct with Repetitive Hydrostatic Pressure.
    Ogura T, Tsuchiya A, Minas T, Mizuno S.
    Cartilage. 2018 Apr;9(2):192-201. PMID: 29262701
  • Mechanical properties and structure-function relationships of human chondrocyte-seeded cartilage constructs after in vitro culture.
    Middendorf, J. M., Griffin, D. J., Shortkroff, S., Dugopolski, C., Kennedy, S., Siemiatkoski, J., Cohen, I. and Bonassar, L. J.
    J Orthop Res. 2017 Oct;35(10):2298-2306 PMID: 28169453
  • In Vitro Culture Increases Mechanical Stability of Human Tissue Engineered Cartilage Constructs by Prevention of Microscale Scaffold Buckling.
    Jill M. Middendorf, Sonya Shortkroff, Caroline Dugopolski, Stephen Kennedy, Joseph Siemiatkoski, Lena R. Bartell, Itai Cohen, Lawrence J. Bonassar.
    J Biomech. 2017 Nov 7;64:77-84. PMID: 28964498
  • A Novel Regenerative Technique Combining Bone Morphogenetic Protein-2 With Fibroblast Growth Factor-2 for Circumferential Defects in Dog Incisors.
    Saito E, Saito A, Kato H, Shibukawa Y, Inoue S, Yuge F, Nakajima T, Takahashi T, Kawanami M.
    J Periodontol. 2016 Sep;87(9):1067-74. PMID: 27240475
  • Utility of T2 mapping and dGEMRIC for evaluation of cartilage repair after allograft chondrocyte implantation in a rabbit model.
    Endo J, Watanabe A, Sasho T, Yamaguchi S, Saito M, Akagi R, Muramatsu Y, Mukoyama S, Katsuragi J, Akatsu Y, Fukawa T, Okubo T, Osone F, Takahashi K.
    Osteoarthritis Cartilage. 2015 Feb;23(2):280-8. PMID:25450842
  • Inflammatory response of intervertebral disc cells is reduced by fibrin sealant scaffold in vitro.
    Buser Z, Liu J, Thorne KJ, Coughlin D, Lotz JC.
    J Tissue Eng Regen Med. 2014 Jan;8(1):77-84. PMID:22610998
  • Application of dedifferentiated fat cells for periodontal tissue regeneration.
    Sugawara A, Sato S.
    Hum Cell. 2014 Jan;27(1):12-21. PMID: 24068600
  • Carbon nanotubes functionalized with fibroblast growth factor accelerate proliferation of bone marrow-derived stromal cells and bone formation.
    Hirata E, Ménard-Moyon C, Venturelli E, Takita H, Watari F, Bianco A, Yokoyama A.
    Nanotechnology. 2013 Nov 1;24(43):435101. PMID: 24077482
  • Experimental Formation of Dentin-like Structure in the Root Canal Implant Model Using Cryopreserved Swine Dental Pulp Progenitor Cells
    Kostas Kodonas, Christos Gogos, Serafim Papadimitriou, Kokona Kouzi-Koliakou, Dimitrios Tziafas
    J Endod. 2012 Jul;38(7):913-9. PMID: 22703653
  • Human telomerase reverse transcriptase and glucose-regulated protein 78 increase the life span of articular chondrocytes and their repair potential.
    Sato M, Shin-Ya K, Lee JI, Ishihara M, Nagai T, Kaneshiro N, Mitani G, Tahara H, Mochida J.
    BMC Musculoskelet Disord. 2012 Apr 2;13(1):51. PMID:22472071
  • Multiwalled carbon nanotube-coating of 3D collagen scaffolds for bone tissue engineering.
    Hirata E, Uo M, Takita H, Akasaka T, Watari F, Yokoyama A.
    Carbon 2011;149(10):3284-3291.
  • Calcified Honeycomb-shaped Collagen Maintains its Geometry in Vivo and Effectively Induces Vasculature and Osteogenesis.
    Yoshinori KUBOKI, Shouhei IKU, Ryota YOSHIMOTO, Tohru KAKU, Hiroko TAKITA, Dong LI, Yasuo KOKAI, Shunji YUNOKI, Rachel L. SAMMONS, Kazuhide OZEKI, and Teruo MIYATA.
    Nano Biomed. 2009;1(2): 85-94.
  • Bone tissue reaction of nano-hydroxyapatite/collagen composite at the early stage of implantation.
    Fukui N, Sato T, Kuboki Y, Aoki H.
    Biomed Mater Eng. 2008;18(1):25-33. PMID: 18198404
  • Bone tissue engineering using human adipose-derived stem cells and honeycomb collagen scaffold.
    Kakudo N, Shimotsuma A, Miyake S, Kushida S, Kusumoto K.
    J Biomed Mater Res A. 2008 Jan;84(1):191-197. PMID:17607760
  • Low-intensity pulsed ultrasound activates the phosphatidylinositol 3 kinase/Akt pathway and stimulates the growth of chondrocytes in three-dimensional cultures: a basic science study.
    Takeuchi R, Ryo A, Komitsu N, Mikuni-Takagaki Y, Fukui A, Takagi Y, Shiraishi T, Morishita S, Yamazaki Y, Kumagai K, Aoki I, Saito T.
    Arthritis Res Ther. 2008;10(4):R77. PMID: 18616830
  • Markedly different effects of hyaluronic acid and chondroitin sulfate-A on the differentiation of human articular chondrocytes in micromass and 3-D honeycomb rotation cultures.
    Banu N, Tsuchiya T.
    J Biomed Mater Res A. 2007 Feb;80(2):257-67. PMID: 16941596
  • Mechanism of bone induction by KUSA/A1 cells using atelocollagen honeycomb scaffold.
    Hidetsugu T, Paola RA, Hitoshi N, Mehmet G, Jin LY, Borkosky SS, Liliana M, Noriyuki N.
    J Biomed Sci. 2007 Mar;14(2):255-263. PMID: 17061146
  • Effects of growth factors on heparin-carrying polystyrene-coated atelocollagen scaffold for articular cartilage tissue engineering.
    Sato M, Ishihara M, Ishihara M, Kaneshiro N, Mitani G, Nagai T, Kutsuna T, Asazuma T, Kikuchi M, Mochida J.
    J Biomed Mater Res B Appl Biomater. 2007 Oct;83(1):181-8. PMID: 17385220
  • Differentiation of mesenchymal stem cells into osteoblasts on honeycomb collagen scaffolds.
    George J, Kuboki Y, Miyata T.
    Biotechnol Bioeng. 2006 Oct 20;95(3):404-11. PMID: 16572435
  • Tissue engineering of articular cartilage with autologous cultured adipose tissue-derived stromal cells using atelocollagen honeycomb-shaped scaffold with a membrane sealing in rabbits.
    Masuoka K, Asazuma T, Hattori H, Yoshihara Y, Sato M, Matsumura K, Matsui T, Takase B, Nemoto K, Ishihara M.
    J Biomed Mater Res B Appl Biomater. 2006 Oct;79(1):25-34. PMID: 16506181
  • Effects of vibration and hyaluronic acid on activation of three-dimensional cultured chondrocytes.
    Takeuchi R, Saito T, Ishikawa H, Takigami H, Dezawa M, Ide C, Itokazu Y, Ikeda M, Shiraishi T, Morishita S.
    Arthritis Rheum. 2006 Jun;54(6):1897-905. PMID:16736525
  • Efficacy of atelocollagen honeycomb scaffold in bone formation using KUSA/A1 cells. 
    Rodriguez AP, Missana L, Nagatsuka H, Gunduz M, Tsujigiwa H, Rivera R, Nagai N.
    J Biomed Mater Res A. 2006 Jun 15;77(4):707-717. PMID:16555268
  • An atelocollagen honeycomb-shaped scaffold with a membrane seal (ACHMS-scaffold) for the culture of annulus fibrosus cells from an intervertebral disc.
    Sato M, Asazuma T, Ishihara M, Kikuchi T, Masuoka K, Ichimura S, Kikuchi M, Kurita A, Fujikawa K.
    J Biomed Mater Res A. 2003 Feb 1;64(2):248-56. PMID:12522811
  • Tissue engineering of the intervertebral disc with cultured annulus fibrosus cells using atelocollagen honeycomb-shaped scaffold with a membrane seal (ACHMS scaffold).
    Sato M, Kikuchi M, Ishihara M, Ishihara M, Asazuma T, Kikuchi T, Masuoka K, Hattori H, Fujikawa K.
    Med Biol Eng Comput. 2003 May;41(3):365-71. PMID: 12803304

Miscellaneous

  • Human iPSC-derived neural crest stem cells can produce EPO and induce erythropoiesis in anemic mice.
    Brizi V, Buttò S, Cerullo D, Michele Lavecchia A, Rodrigues-Diez R, Novelli R, Corna D, Benigni A, Remuzzi G, Xinaris C.
    Stem Cell Res. 2021 Aug;55:102476. PMID: 34339993
    神経堤細胞をハニカムに播種し、マウス皮下に移植。
  • Obesity accelerates hair thinning by stem cell-centric converging mechanisms. Morinaga H, Mohri Y, Grachtchouk M, Asakawa K, Matsumura H, Oshima M, Takayama N, Kato T, Nishimori Y, Sorimachi Y, Takubo K, Suganami T, Iwama A, Iwakura Y, Dlugosz AA, Nishimura EK.
    Nature. 2021 Jul;595(7866):266-271. PMID: 34163066.
  • Recellularization of decellularized cancellous bone scaffolds using low-temperature cell seeding.
    Nakamura N, Saito K, Kimura T, Kishida A.
    Tissue Cell. 2020 Oct;66:101385. PMID: 32933708.
  • Development of a cranium-infection rat model for artificial bone implantation.
    Inoue Y, Sakamoto Y, Ochiai H, Yoshimura Y, Okumoto T.
    Biomed Res Clin Prac, 2016 Volume 1(1): 18-21.
  • A three-dimensional collagen-sponge-based culture system coated with simplified recombinant fibronectin improves the function of a hepatocyte cell line.
    Nishida Y, Taniguchi A.
    In Vitro Cell Dev Biol Anim. 2016 Mar;52(3):271-7. PMID: 26714750
  • Cinnamtannin B-1 Promotes Migration of Mesenchymal Stem Cells and Accelerates Wound Healing in Mice.
    Fujita K, Kuge K, Ozawa N, Sahara S, Zaiki K, Nakaoji K, Hamada K, Takenaka Y, Tanahashi T, Tamai K, Kaneda Y, Maeda A.
    PLoS One. 2015 Dec 11;10(12):e0144166. PMID: 26657737
  • Red blood cell generation by three-dimensional aggregate cultivation of late erythroblasts.
    Lee E, Han SY, Choi HS, Chun B, Hwang B, Baek EJ.
    Tissue Eng Part A. 2015 Feb;21(3-4):817-28. PMID: 25314917
  • Mallotus philippinensis bark extracts promote preferential migration of mesenchymal stem cells and improve wound healing in mice.
    Furumoto T, Ozawa N, Inami Y, Toyoshima M, Fujita K, Zaiki K, Sahara S, Akita M, Kitamura K, Nakaoji K, Hamada K, Tamai K, Kaneda Y, Maeda A.
    Phytomedicine. 2014 Feb 15;21(3):247-53. PMID: 24182990
  • 3D-fection: cell transfection within 3D scaffolds and hydrogels.
    Sapet C, Formosa C, Sicard F, Bertosio E, Zelphati O, Laurent N.
    Ther Deliv. 2013 Jun;4(6):673-85. PMID: 23738666
  • 3D collagen scaffolds coated with multiwalled carbon nanotubes: initial cell attachment to internal surface.
    Hirata E, Uo M, Nodasaka Y, Takita H, Ushijima N, Akasaka T, Watari F, Yokoyama A.
    J Biomed Mater Res B Appl Biomater. 2010 May;93(2):544-550. PMID: 20186828
  • In vitro and de novo generation of hair from mosaic spheres formed jointly from ES and mesenchymal cells.
    Mariko Yamaki.
    Journal of the Japanese Society for Regenerative Medicine 2009 8(2):91-97.
  • Artificial extracellular matrix of type I collagen can suppress the tumorigenetic potential of mouse embryonic stem cells.
    Mariko Yamaki.
    Journal of the Japanese Society for Regenerative Medicine 2009 8(1):109-114.
  • Biodegradable honeycomb collagen scaffold for dermal tissue engineering.
    George J, Onodera J, Miyata T.
    J Biomed Mater Res A. 2008 Dec 15;87(4):1103-11. PMID: 18792951
  • An experimental study of novel bioartificial materials applied to glycotechnology for tissue engineering.
    Megumi Hayashi, Yukio Sumi, Hirokazu Mizuno, Hideki Mizutani, Minoru Ueda, Ken-ichiro Hata.
    Materials Science and Engineering: C. Volume 24, Issue 3, 1 April 2004, Pages 447–455.
  • Embryonic stem cell-derived embryoid bodies in three-dimensional culture system form hepatocyte-like cells in vitro and in vivo.
    Imamura T, Cui L, Teng R, Johkura K, Okouchi Y, Asanuma K, Ogiwara N, Sasaki K.
    Tissue Eng. 2004 Nov-Dec;10(11-12):1716-24. PMID: 15684680
  • A honeycomb collagen carrier for cell culture as a tissue engineering scaffold.
    Itoh H, Aso Y, Furuse M, Noishiki Y, Miyata T.
    Artif Organs. 2001 Mar;25(3):213-7. PMID: 11284889
  • Development of composite cultured oral mucosa utilizing collagen sponge matrix and contracted collagen gel: a preliminary study for clinical applications.
    Moriyama T, Asahina I, Ishii M, Oda M, Ishii Y, Enomoto S.
    Tissue Eng. 2001 Aug;7(4):415-27. PMID: 11506731
  • Arg-gingipain a DNA vaccine induces protective immunity against infection by Porphyromonas gingivalis in a murine model.
    Yonezawa H, Ishihara K, Okuda K.
    Infect Immun. 2001 May;69(5):2858-64. PMID:11292699