A non-radioisotope complete kit useful for screening of anti-diabetic drugs and research in area of glucose metabolism and insulin signaling.

2-Deoxyglucose (2DG) Uptake Measurement Kit

 

Background

Measuring uptake of 2-deoxyglucose (2DG) in tissues and cells is a reliable approach method to estimate the amount of glucose uptake and thereby to explore the regulation of glucose metabolism and mechanism of insulin resistance. Radioisotope-labeled 2DG is usually used to measure 2DG uptake both in vivo and in vitro. However a specialized RI facility with strict limitations is required to carry out the radioisotope (RI) method and cannot be handled in ordinal laboratories. Furthermore, radioactive 2DG administered into cultured cells remains in extracellular space, and therefore the results obtained must be corrected by separating the extracellular 2DG and intracellular 2DG/2DG-6-phosphate (2DG6P) in the cells.
This kit is based on the enzymatic method for the direct measurement of amount of 2DG6P without the use of radioisotope materials (Saito K and Minokoshi Y, et al. Analytical Biochem 412: 9-17, 2011).

A small amount of 2DG is administered into animals or cultured cells, and endogenous glucose and glucose-6phosphate (G6P) in tissues or cells is oxidized in the presence of a low concentration of G6PDH. 2DG-6-phosphate (2DG6P) accumulated in cells is then oxidized in the presence of a high concentration of G6PDH. NADPH produced from 2DG6P and G6PDH is quantified at 420 nm with the use of a recycling amplification enzymatic-photometric system. The novel enzymatic method can quantify 2DG or 2DG6P in the range of 5-80 pmol. As all enzyme reactions are performed in one 96-well microplate by the sequential addition of reagents, this method can be adopted for industrial robots. This method is useful for the screening of anti-diabetic drugs as well as for research in glucose metabolism and insulin signaling.

Principle

A recycling enzymatic amplification system measures NADPH produced by the in vitro oxidation of 2DG6P accumulated in cells following 2DG uptake.

1) So as not to effect glucose metabolism, only a small amount of 2DG is added to live cells. Incorporated 2DG is converted by cell metabolism to 2D6GP, which accumulates in cells. Cell lysates are then prepared.

2) To eliminate detection of G6P, G6P is oxidized (to 6PG) with NAD+ and a low concentration of G6PDH.

3) 2DG6P levels are quantitated by measuring the amount of NADPH produced during 2DG6P oxidation
(with NADP+ and a high concentration of G6PDH) in a photometric recycling amplification/detection system

All reaction steps are conveniently performed in a single well by the sequential addition of premixed reagents. Ideal for assay automation

Frequently Asked Questions

Features and Advantages

No RI materials are required, and 2DG uptake can be measured in any ordinal laboratories.
Direct measurement of 2DG6P amount accumulated in target cells.
High sensitivity with the use of enzyme-recycling amplification reaction.

< Comparison between this kit and RI method >

Application

< Temporal change of O.D. for different concentrations of 2DG6P 

08171151-57b3d14627db9.jpg

< Experimental example 1 2-deoxyglucose (2DG) uptake by 3T3-L1 cells>

< Experimental Example 2 - 2-deoxyglucose (2DG) uptake by human adipocytes >

Catalog Number Product Name Size
CSR-OKP-PMG-K01H 2-Deoxyglucose (2DG) Uptake Measurement Kit
50 rxns
25 rxns

References

2022

2021

2020

2019

2012-2018

  • Sirt2 facilitates hepatic glucose uptake by deacetylating glucokinase regulatory protein
    Watanabe H, Inaba Y, Kimura K, Matsumoto M, Kaneko S, Kasuga M, Inoue H
    Nat Commun. 2018 Jan 2;9(1):30. PMID: 29296001
  • Lack of O-GlcNAcylation enhances exercise-dependent glucose utilization potentially through AMP-activated protein kinase activation in skeletal muscle.
    Murata K, Morino K, Ida S, Ohashi N, Lemecha M, Park SY, Ishikado A, Kume S, Choi CS, Sekine O, Ugi S, Maegawa H
    Biochem Biophys Res Commun. 2018 Jan 8;495(2):2098-2104 PMID: 29253568
  • cGMP/PKG-I Pathway-Mediated GLUT1/4 Regulation by NO in Female Rat Granulosa Cells.
    Tian Y, Heng D, Xu K, Liu W, Weng X, Hu X, Zhang C
    Endocrinology. 2018 Feb 1;159(2) PMID: 29300939
  • 5-aminolevulinic acid (ALA) deficiency causes impaired glucose tolerance and insulin resistance coincident with an attenuation of mitochondrial function in aged mice.
    Saitoh S, Okano S, Nohara H, Nakano H, Shirasawa N, Naito A, Yamamoto M, Kelly VP, Takahashi K, Tanaka T, Nakajima M, Nakajima O
    PLoS One. 2018 Jan 24;13(1) PMID: 29364890
  • Low-dose YC-1 combined with glucose and insulin selectively induces apoptosis in hypoxic gastric carcinoma cells by inhibiting anaerobic glycolysis.
    Wakiyama K, Kitajima Y, Tanaka T, Kaneki M, Yanagihara K, Aishima S, Nakamura J, Noshiro H
    Sci Rep. 2017 Oct 4;7(1) PMID: 28978999
  • β-arrestin-2 is involved in irisin induced glucose metabolism in type 2 diabetes via p38 MAPK signaling.
    Pang Y, Zhu H, Xu J, Yang L, Liu L, Li J
    Exp Cell Res. 2017 Nov 15;360(2):199-204 PMID: 28888936
  • Differential regulation of baicalin and scutellarin on AMPK and Akt in promoting adipose cell glucose disposal.
    Yang LL, Xiao N, Liu J, Liu K, Liu B, Li P, Qi LW.
    Biochim Biophys Acta. 2017 Feb;1863(2):598-606. PMID: 27903431
  • 5-aminolevulinic acid combined with ferrous ion reduces adiposity and improves glucose tolerance in diet-induced obese mice via enhancing mitochondrial function
    Ota U, Hara T, Nakagawa H, Tsuru E, Tsuda M, Kamiya A, Kuroda Y, Kitajima Y, Koda A, Ishizuka M, Fukuhara H, Inoue K, Shuin T, Nakajima M, Tanaka T.
    BMC Pharmacol Toxicol. 2017 Jan 30;18(1):7. PMID: 28132645
  • Effect of resistance exercise under conditions of reduced blood insulin on AMPKα Ser485/491 inhibitory phosphorylation and AMPK pathway activation.
    Kido K, Yokokawa T, Ato S, Sato K, Fujita S.
    Am J Physiol Regul Integr Comp Physiol. 2017 May 17:ajpregu.00063.2017. PMID: 28515080
  • Lignosulfonic acid promotes hypertrophy in 3T3-L1 cells without increasing lipid content and increases their 2-deoxyglucose uptake.
    Hasegawa Y, Nakagawa E, Kadota Y, Kawaminami S.
    Asian-Australas J Anim Sci. 2017 Jan;30(1):111-118. PMID: 27383805
  • Nrf2-Mediated Regulation of Skeletal Muscle Glycogen Metabolism.
    Uruno A, Yagishita Y, Katsuoka F, Kitajima Y, Nunomiya A, Nagatomi R, Pi J, Biswal SS, Yamamoto M
    Mol Cell Biol. 2016 May 16;36(11):1655-72 PMID: 27044864
  • mTORC1 is a critical mediator of oncogenic Semaphorin3A signaling.
    Yamada D, Kawahara K, Maeda T.
    Biochem Biophys Res Commun. 2016 Aug 5;476(4):475-80. PMID: 27246732
  • ARNT2 Regulates Tumoral Growth in Oral Squamous Cell Carcinoma.
    Kimura Y, Kasamatsu A, Nakashima D, Yamatoji M, Minakawa Y, Koike K, Fushimi K, Higo M, Endo-Sakamoto Y, Shiiba M, Tanzawa H, Uzawa K.
    J Cancer. 2016 Mar 26;7(6):702-10. PMID: 27076852
  • Retention of acetylcarnitine in chronic kidney disease causes insulin resistance in skeletal muscle.
    Miyamoto Y, Miyazaki T, Honda A, Shimohata H, Hirayama K, Kobayashi M
    J Clin Biochem Nutr. 2016 Nov;59(3) PMID: 27895387
  • mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue.
    Albert V, Svensson K, Shimobayashi M, Colombi M, Munoz S, Jimenez V, Handschin C, Bosch F, Hall MN.
    EMBO Mol Med. 2016 Mar 1;8(3):232-46. PMID: 26772600
  • Enhancement of energy production by black ginger extract containing polymethoxy flavonoids in myocytes through improving glucose, lactic acid and lipid metabolism
    Toda K, Takeda S, Hitoe S, Nakamura S, Matsuda H, Shimoda H
    J Nat Med. 2016 Apr;70(2):163-72 PMID: 26581843
  • D-Allose Inhibits Cancer Cell Growth by Reducing GLUT1 Expression.
    Noguchi C, Kamitori K, Hossain A, Hoshikawa H, Katagi A, Dong Y, Sui L, Tokuda M, Yamaguchi F.
    Tohoku J Exp Med. 2016;238(2):131-41. PMID: 26829886
  • Jayakody, Lahiru N., et al. "SUMO expression shortens the lag phase of Saccharomyces cerevisiae yeast growth caused by complex interactive effects of major mixed fermentation inhibitors found in hot-compressed water-treated lignocellulosic hydrolysate.Applied microbiology and biotechnology 99 (2015): 501-515.
  • Role of plasminogen activator inhibitor-1 in glucocorticoid-induced diabetes and osteopenia in mice.
    Tamura Y, Kawao N, Yano M, Okada K, Okumoto K, Chiba Y, Matsuo O, Kaji H.
    Diabetes. 2015 Jun;64(6):2194-206. PMID: 25552599
  • The Apoptotic Effect of HIF-1α Inhibition Combined with Glucose plus Insulin Treatment on Gastric Cancer under Hypoxic Conditions.
    Tanaka T, Kitajima Y, Miyake S, Yanagihara K, Hara H, Nishijima-Matsunobu A, Baba K, Shida M, Wakiyama K, Nakamura J, Noshiro H.
    PLoS One. 2015 Sep 4;10(9):e0137257. PMID: 26339797
  • Mutational and functional analysis of Glucose transporter I deficiency syndrome.
    Nakamura S, Osaka H, Muramatsu S, Aoki S, Jimbo EF, Yamagata T.
    Mol Genet Metab. 2015 Nov;116(3):157-62. PMID: 26304067
  • SUMO expression shortens the lag phase of Saccharomyces cerevisiae yeast growth caused by complex interactive effects of major mixed fermentation inhibitors found in hot-compressed water-treated lignocellulosic hydrolysate.
    Jayakody LN, Kadowaki M, Tsuge K, Horie K, Suzuki A, Hayashi N, Kitagaki H.
    Appl Microbiol Biotechnol. 2015 Jan;99(1):501-15. PMID: 25359478
  • Promotion of insulin-induced glucose uptake in C2C12 myotubes by osteocalcin.
    Tsuka S, Aonuma F, Higashi S, Ohsumi T, Nagano K, Mizokami A, Kawakubo-Yasukochi T, Masaki C, Hosokawa R, Hirata M, Takeuchi H.
    Biochem Biophys Res Commun. 2015 Apr 10;459(3):437-42. PMID: 25735975
  • Lignosulfonic Acid-Induced Inhibition of Intestinal Glucose Absorption.
    Hasegawa Y, Kadota Y, Hasegawa C, Kawaminami S.
    J Nutr Sci Vitaminol (Tokyo). 2015;61(6):449-54. PMID: 26875485
  • Improvement of insulin signaling in myoblast cells by an addition of SKIP-binding peptide within Pak1 kinase domain.
    Ijuin T, Takenawa T.
    Biochem Biophys Res Commun. 2015 Jan 2;456(1):41-6. PMID: 25446075
  • Cyanidin-3-glucoside derived from black soybeans ameliorate type 2 diabetes through the induction of differentiation of preadipocytes into smaller and insulin-sensitive adipocytes.
    Matsukawa T, Inaguma T, Han J, Villareal MO, Isoda H.
    J Nutr Biochem. 2015 Aug;26(8):860-7. PMID: 25940979
  • Skeletal muscle insulin resistance in zebrafish induces alterations in β-cell number and glucose tolerance in an age- and diet-dependent manner.
    Maddison LA, Joest KE, Kammeyer RM, Chen W.
    Am J Physiol Endocrinol Metab. 2015 Apr 15;308(8):E662-9. PMID: 25670827
  • Expression of SGLT1 in Human Hearts and Impairment of Cardiac Glucose Uptake by Phlorizin during Ischemia-Reperfusion Injury in Mice.
    Kashiwagi Y, Nagoshi T, Yoshino T, Tanaka TD1, Ito K, Harada T, Takahashi H, Ikegami M, Anzawa R, Yoshimura M.
    PLoS One. 2015 Jun 29;10(6):e0130605 PMID: 26121582
  • Inhibition of soluble epoxide hydrolase modulates inflammation and autophagy in obese adipose tissue and liver: role for omega-3 epoxides.
    Lopez-Vicario C, Alcaraz-Quiles J, Garcia-Alonso V, Rius B, Hwang SH, Titos E, Lopategi A, Hammock BD, Arroyo V, Claria J.
    Proc Natl Acad Sci U S A. 2015 Jan 13;112(2):536-41 PMID: 25550510
  • Fluorescent detection of peritoneal metastasis in human colorectal cancer using 5-aminolevulinic acid.
    Kondo Y, Murayama Y, Konishi H, Morimura R, Komatsu S, Shiozaki A, Kuriu Y, Ikoma H, Kubota T, Nakanishi M, Ichikawa D, Fujiwara H, Okamoto K, Sakakura C, Takahashi K, Inoue K, Nakajima M, Otsuji E.
    Int J Oncol. 2014 Jul;45(1):41-6. PMID: 24821500
  • Hydroxyeicosapentaenoic acids from the Pacific krill show high ligand activities for PPARs.
    Yamada H, Oshiro E, Kikuchi S, Hakozaki M, Takahashi H, Kimura K.
    J Lipid Res. 2014 May;55(5):895-904. PMID: 24668940
  • Genome-wide analysis of histone modifications in human endometrial stromal cells.
    Tamura I, Ohkawa Y, Sato T, Suyama M, Jozaki K, Okada M, Lee L, Maekawa R, Asada H, Sato S, Yamagata Y, Tamura H, Sugino N.
    Mol Endocrinol. 2014 Oct;28(10):1656-69. PMID: 25073104
  • Insulin sensitivity is inversely related to cellular energy status, as revealed by biotin deprivation.
    Salvador-Adriano A, Vargas-Chavez S, Hernandez-Vazquez Ade J, Ortega-Cuellar D, Tovar AR, Velazquez-Arellano A.
    Am J Physiol Endocrinol Metab. 2014 Jun 15;306(12):E1442-8. PMID: 24801390
  • Synip phosphorylation is required for insulin-stimulated Glut4 translocation and glucose uptake in podocyte.
    Yamada E, Saito T, Okada S, Takahashi H, Ohshima K, Hashimoto K, Satoh T, Mori M, Okada J, Yamada M.
    Endocr J. 2014;61(5):523-7. Epub 2014 Apr 5. PMID: 24705589
  • Paternal allele influences high fat diet-induced obesity.
    Morita S, Horii T, Kimura M, Arai Y, Kamei Y, Ogawa Y, Hatada I.
    PLoS One. 2014 Jan 8;9(1):e85477. PMID: 24416415
  • Dietary combination of sucrose and linoleic acid causes skeletal muscle metabolic abnormalities in Zucker fatty rats through specific modification of fatty acid composition.
    Ohminami H, Amo K, Taketani Y, Sato K, Fukaya M, Uebanso T, Arai H, Koganei M, Sasaki H, Yamanaka-Okumura H, Yamamoto H, Takeda E.
    J Clin Biochem Nutr. 2014 Jul;55(1):15-25. PMID: 25147427
  • Water-Soluble C60-(OH)24 Fullerene Hydroxide Protects against the Catabol-ic Stress-Induce Downregulation of Chondrocyte Activity in Osteoarthritis
    Yoshioka H, Yui N, Fujiya H, Musha H, Beppu M, Karasawa R and Yudoh K.
    J Nanotechnology Smart Mater 2014, Vol 1: 401 PMID:
  • Myostatin alters glucose transporter-4 (GLUT4) expression in bovine skeletal muscles and myoblasts isolated from double-muscled (DM) and normal-muscled (NM) Japanese shorthorn cattle.
    Takahashi H, Sato K, Yamaguchi T, Miyake M, Watanabe H, Nagasawa Y, Kitagawa E, Terada S, Urakawa M, Rose MT, McMahon CD, Watanabe K, Ohwada S, Gotoh T, Aso H.
    Domest Anim Endocrinol. 2014 Jul;48:62-8. PMID: 24906930
  • Aculeatin, a coumarin derived from Toddalia asiatica (L.) Lam., enhances differentiation and lipolysis of 3T3-L1 adipocytes
    Akio Watanabe, Tsuyoshi Kato, Yusuke Ito, Izumi Yoshida, Teppei Harada, Takashi Mishima, Kazuhiro Fujita, Masatoshi Watai, Kiyotaka Nakagawa, Teruo Miyazawa
    Biochem Biophys Res Commun. 2014 Oct 31;453(4):787-92. PMID: 25445590
  • SIK2 is critical in the regulation of lipid homeostasis and adipogenesis in vivo.
    Park J, Yoon YS, Han HS, Kim YH, Ogawa Y, Park KG, Lee CH, Kim ST, Koo SH.
    Diabetes. 2014 Nov;63(11):3659-73. PMID: 24898145
  • Vascular rarefaction mediates whitening of brown fat in obesity.
    Shimizu I, Aprahamian T, Kikuchi R, Shimizu A, Papanicolaou KN, MacLauchlan S, Maruyama S, Walsh K.
    J Clin Invest. 2014 May;124(5):2099-112. PMID: 24713652
  • Neurophysiologic and antipsychotic profiles of TASP0433864, a novel positive allosteric modulator of metabotropic glutamate 2 receptor.
    Hiyoshi T, Marumo T, Hikichi H, Tomishima Y, Urabe H, Tamita T, Iida I, Yasuhara A, Karasawa J, Chaki S.
    J Pharmacol Exp Ther. 2014 Dec;351(3):642-53. PMID: 25277141
  • Bioengineered 3D human kidney tissue, a platform for the determination of nephrotoxicity.
    DesRochers TM, Suter L, Roth A, Kaplan DL.
    PLoS One. 2013;8(3):e59219. PMID: 23516613
  • Avicularin, a plant flavonoid, suppresses lipid accumulation through repression of C/EBPα-activated GLUT4-mediated glucose uptake in 3T3-L1 cells.
    Ijuin T, Takenawa T.
    J Agric Food Chem. 2013 May 29;61(21):5139-47. PMID: 23647459
  • Receptor for advanced glycation end products regulates adipocyte hypertrophy and insulin sensitivity in mice: involvement of Toll-like receptor 2.
    Monden M, Koyama H, Otsuka Y, Morioka T, Mori K, Shoji T, Mima Y, Motoyama K, Fukumoto S, Shioi A, Emoto M, Yamamoto Y, Yamamoto H, Nishizawa Y, Kurajoh M, Yamamoto T, Inaba M.
    Diabetes. 2013 Feb;62(2):478-89. PMID: 23011593
  • The edible red alga, Gracilaria verrucosa, inhibits lipid accumulation and ROS production, but improves glucose uptake in 3T3-L1 cells.
    Woo MS, Choi HS, Lee OH, Lee BY.
    Phytother Res. 2013 Jul;27(7):1102-5. PMID: 22991308
  • Resveratrol protects against polychlorinated biphenyl-mediated impairment of glucose homeostasis in adipocytes.
    Baker NA, English V, Sunkara M, Morris AJ, Pearson KJ, Cassis LA.
    J Nutr Biochem. 2013 Dec;24(12):2168-74. PMID: 24231106
  • PAQR3 modulates insulin signaling by shunting phosphoinositide 3-kinase p110α to the Golgi apparatus.
    Wang X, Wang L, Zhu L, Pan Y, Xiao F, Liu W, Wang Z, Guo F, Liu Y, Thomas WG, Chen Y.
    Diabetes. 2013 Feb;62(2):444-56. PMID: 23086038
  • Reduced histone H3K9 acetylation of clock genes and abnormal glucose metabolism in ob/ob mice.
    Ishikawa-Kobayashi E, Ushijima K, Ando H, Maekawa T, Takuma M, Furukawa Y, Fujimura A.
    Chronobiol Int. 2012 Oct;29(8):982-93. PMID: 22891617

  • An enzymatic photometric assay for 2-deoxyglucose uptake in insulin-responsive tissues and 3T3-L1 adipocytes.
    Saito K, Lee S, Shiuchi T, Toda C, Kamijo M, Inagaki-Ohara K, Okamoto S, Minokoshi Y.
    Anal Biochem. 2011 May 1;412(1):9-17. PMID: 21262191
  • Recycling analysis of nicotinamide-adenine dinucleotide phosphates (NADP and NADPH).
    Jorgensen BM, Rasmussen HN.
    Anal Biochem. 1979 Nov 1;99(2):297-303. PMID: 42325

To be used for research only. DO NOT use for human gene therapy or clinical diagnosis.