

5-Aminolevulinic Acid Hydrochloride

 $NH_2CH_2CO(CH_2)_2COOH$ HCI = 167.6

Cas No. 5451-09-2

Catalog Number ☐ CRI-AL-05-1 · · · · · · ☐ CRI-AL-05-2 · · · · · ·

Lot:

fermentation Origin:

Formulation: White powder (Crystal), Soluble in water (solubility: MT 500g/L)

Soluble in MeOH. Insoluble in EtOH

Purity: Assav (HPLC) Composition* 98 % (100.2%) min.

> Other Amino acid · · · · · · · · · max.

Ashes 0.1% (0.03%) max.

20ppm **Heavy Metals** max.

0.5% (0.07%) Water max. *Method specified by 7 the company compatible (Bacteria/Fungi)

Microbial limit test · · · · · · · ·

Storage:

Store in the dark under 2-8°C and protect from light.

In case stored as solution, please note description following and avoid long-term storage

- Avoid storage with higher concentration (MT 1%)
- The product is unstable under the condition above pH 7.

1% solution will be stable for 2 days below pH5 and stable for 1 month below pH2.35 (3).

- · Decomposed with alkaline solution and converted to dimmer form Pyradine (Irreversible)
- Melting Point (decomp.) 156-158℃
- · Filtration is recommended for sterilization of solution

Cautions:

- This reagent is acidic materials so do not ingest, swallow or inhale. Do not get in eyes, on skin or on
- · Protect from direct light in whole process of applications.

Application notes:

5-ALA is applied in variety of scientific fields with wide range. Examples of applications are shown below. Please refer published papers for details of specific applications.

- Application in production of Cytochrome P450 (4)
- · Improvement of harvest yield or increase of plant greenness (5)
- · Supplement for culture of microorganism or cells from animals (6)
- · Research relating production of active oxygen derived from accumulation of excess amount of porphirins
- · Photodynamic diagnosis for cancer research (9)

Bibliography

(1)Mauzerall D. et al. J. Biol. Chem. 219: 435-446 (1956). (2)Okayama A. et al. Clin. Chem. 36: 1494-1497 (1990). (3)Elfsson, B et al. Pharmceutical Science, 7, 87-91, (1998). (4)Imai T. et al. J. Biol. Chem.. 268, 19681-19689, (1993). (5) Hotta Y. et al. Plant Growth Regulation, 22, 109-114, (1997). (6) Nakayashiki T. et al. Genes Genet. Syst. 71, 237-241, (1996). (7)Rebeiz CA et al. Enzyme Microb. Technol. 6, 390-401, (1984). (8) Grant WE et al. The Lancet, 342, 147-148, (1993). (9) Kamasaki N. et al. J. Jpn. Soc. Laser Surgery Medicine, 22, 255-262, (2001).