

www.toyobo.co.jp/e/bio

Instruction manual THUNDERBIRD SYBR qPCR Mix 0910

A4251K

THUNDERBIRD™ SYBR® qPCR Mix

QPS-201T 1 mL x 1 QPS-201 1.67 mL x 3 Store at -20°C, protected from light

Contents

[1] Introduction

- [2] Components
- [3] Primer design
- [4] Template DNA
- [5] **Protocol**
 - 1. Standard reaction set up
 - 2. Cycling condition
 - 2-1. Real-time PCR conditions using Applied Biosystems 7900HT
 - 2-2. Real-time PCR conditions using Roche LightCycler 1.1
 - 2-3. 3-step cycle
- [6] Related Protocol

cDNA synthesis

- [7] **Troubleshooting**
- [8] Related products

CAUTION

All reagents in this kit are intended for research purposes. Do not use for diagnosis or clinical purposes. Please observe general laboratory precaution and utilize safety while using this kit.

-LightCycler[™] is a trademark of Idaho Technology, Inc. and Roche Molecular Systems, Inc. -SYBR[®] is a registered trademark of Roche Molecular Systems, Inc.

JAPAN TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp

CHINA TOYOBO Bio-Technology, CO., LTD. Tel(86)-21-58794900.4140

[1] Introduction

Description

THUNDERBIRDTM SYBR[®] qPCR Mix is a highly efficient 2x Master Mix for real-time PCR using SYBR[®] Green I. The master mix contains all required components, except ROX reference dye and primers (50x ROX reference dye is individually supplied with this kit). The master mix facilitates reaction setup, and improves the reproducibility of experiments.

This product is an improved version of Realtime PCR Master Mix (Code No. QPK-201) and Realtime PCR Master Mix -Plus- (Code No. QPK-212). In particular, the reaction specificity and PCR efficiency is enhanced.

Features

-High specificity

The specificity for the detection of low-copy targets is improved.

-Homogeneous amplification

The dispersion of PCR efficiency between targets is reduced by a new PCR enhancer*. (*Patent pending)

-Broad dynamic range

High specificity and effective amplification enable the detection of a broad dynamic range.

-Compatibility for various real-time cyclers.

The reagent is applicable to most real-time cyclers (i.e. Block type and glass capillary type). Because the 50x ROX reference dye is individually supplied with this kit, the kit can be applied to real-time cyclers that require a passive reference dye.

-Hot start PCR

The master mix contains anti-Taq DNA polymerase antibodies for hot start technology. The antibodies are easily inactivated in the first denaturation step, thereby activating the DNA polymerase.

About the SYBR® Green I detection system

The SYBR[®] Green I assay system utilizes fluorescent emission when SYBR[®] Green is intercalated into double-stranded DNA. The signal depends on the amount of amplified DNA. However, this system cannot distinguish between target and non-specific amplicons. Therefore, melting curve analysis is necessary after amplification.

[2] Components

This kit includes the following components for 40 reactions (QPS-201T) and 200 reactions (QPS-201), with a total of 50 μ l per reaction. All reagents should be stored at -20 °C.

<qps-201t></qps-201t>	
THUNDERBIRD™ SYBR [®] qPCR Mix	1 ml x 1
50xROX reference dye	50 µl x 1

JAPAN TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp

<QPS-201> THUNDERBIRD™ SYBR[®] qPCR Mix 1.67 ml x 3 50xROX reference dye 250 µl x 1

Notes:

-THUNDERBIRD[™] SYBR[®] qPCR Mix can be stored, protected from light, at 2-8°C for up to 3 months. For longer storage, this reagent should be kept at -20°C and protected from light. No negative effect was detected by 10 freeze-thaw cycles of THUNDERBRID[™] SYBR[®] qPCR Mix. This reagent does not contain the ROX reference dye.

-50x ROX reference dye can be stored, protected from light, at 2-8°C or -20°C. For real-time cyclers that require a passive reference dye, this reagent must be added to the reaction mixture at a concentration of 1x or 0.1x. The master mix solution with the ROX reference dye can be stored, protected from light, at 2-8°C for up to 3 months. For longer storage, this reagent should be kept at -20°C and protected from light. The pre-mixed reagents can be prepared according to the following ratios. [5] Table 1 shows the optimal concentration of the ROX dye.

1x Solution

THUNDERBIRDTM SYBR[®] qPCR Mix : 50xROX reference dye = 1.67 ml : 66.8 µl THUNDERBIRDTM SYBR[®] qPCR Mix : 50xROX reference dye = 1 ml : 40 µl

0.1x Solution

THUNDERBIRDTM SYBR[®] qPCR Mix : $50 \times ROX$ reference dye = 1.67 ml : 6.7 µl THUNDERBIRDTM SYBR[®] qPCR Mix : $50 \times ROX$ reference dye = 1 ml : 4 µl

For real-time cyclers that do not require a passive reference dye, THUNDERBIRDTM SYBR[®] qPCR Mix without the ROX reference dye can be used.

[3] Primer design 1. Primer conditions

Highly sensitive and quantitative data depend on primer design. The primer should be designed according to the following suggestions;

-Primer length: 20-30 mer

-GC content of primer: 40-60%

- -Target length: ≤ 200 bp (optimally, 80-150 bp)
- -Melting temperature (Tm) of primers: 60-65°C

-Purification grade of primers: Cartridge (OPC) grade or HPLC grade

Notes:

-Longer targets (>200 bp) reduce efficiency and specificity of amplification.

-Tm of the primers can be flexible, because the Tm value depends on the calculation formula.

JAPAN TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp

CHINA TOYOBO Bio-Technology, CO., LTD. Tel(86)-21-58794900.4140

[4] Template DNA

The following DNA samples can be used as templates.

1. cDNA

Non-purified cDNA, generated by reverse transcription reactions, can be used directly for real-time PCR using THUNDERBIRD[™] SYBR[®] qPCR Mix. Up to 10% of the volume of a cDNA solution can be used for a real-time PCR reaction. However, excess volume of the cDNA may inhibit the PCR. Up to 20% (v/v) of the cDNA solution from ReverTra Ace[®] qPCR RT Kit (Code No. FSQ-101) can be used for real-time PCR.

2. Genomic DNA, Viral RNA

Genomic DNA and viral RNA can be used at up to 200 ng in 50 μ l reactions.

3. Plasmid DNA

Although super-coiled plasmids can be used, linearized plasmid DNA produces more accurate assays. The copy number of the plasmid DNA can be calculated by the following formula.

Copy number of 1µg of plasmid DNA = 9.1 x 10^{11} / Size of plasmid DNA (kb)

[5] Protocol **Reaction mixture setup** 1.

	Reaction volume		Final	
Reagent	50µl	20µl	Concentration	
DW	X μl	X μl		
THUNDERBIRD TM SYBR [®] qPCR Mix	25 µl	10 µl	1x	
Forward Primer	15 pmol	6 pmol	$0.3 \ \mu M^{*1}$	
Reverse Primer	15 pmol	6 pmol	$0.3 \ \mu M^{*1}$	
50X ROX reference dye	1µl / 0.1µl	0.4µl / 0.04	μ l 1x / 0.1x*	
DNA solution	Υµl	Yμl		
Total	50 µl	20 µl		

JAPAN	
-------	--

TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp

Notes:

- *1 Higher primer concentration tends to improve the amplification efficiency, and lower primer concentration tends to reduce the non-specific amplification. The primer concentration should be set between $0.2-0.6 \ \mu M$.
- *2 50xROX reference dye must be added when using real-time cyclers that require a passive reference dye, according to Table 1. Table 1 shows the optimum concentration of the ROX reference dye. This dye is not necessary for real-time cyclers that do not require a passive reference dye.

Table 1 Recommended ROX dye concentration

Real-time cycler	Optimal dye concentration
	(dilution ratio)
Applied Biosystems 7000, 7300, 7700, 7900HT etc.	1x (50:1)
Applied Biosystems 7500, 7500Fast,	0.1x (500:1)
Stratagene cyclers (Option) etc.	
Roche cyclers, Bio-Rad cyclers, BioFlux cyclers etc.	Not required

Notes:

The ROX dye in SYBR[®] Green Realtime PCR Master Mix (Code No. QPK-201) and SYBR[®] Green Realtime PCR Master Mix -Plus- (Code No. QPK-212) correspond to 1x concentration.

2. PCR cycling conditions

The following table shows the recommended thermal conditions using primers designed according to the recommended primer described in [3]. Almost all targets can also be amplified using the ongoing conditions with other real-time PCR reagents.

When satisfactory results are not obtained or the Tm value of the primers is lower than 60°C, a 3-step cycle should be used. The detailed conditions are described in [5] 2-3.

<3-step cycle>	Temperature	Time	Ramp	
Pre-denaturation	95°C	$20-60 \text{ sec}^{*1}$.	Maximum	
Denaturation:	95°C	$1-15 \text{ sec}^{*2}$.	Maximum	←
Extension:	60°C*3	$30-60 \text{ sec}^{*4}$.	Maximum	40 cycles
(data collection should be set at the extension step)				
Melting / Dissociation Curve Analysis ^{*5}				

*1 Due to the anti-Taq antibody hot start PCR system, the pre-denaturation can be completed within 60 sec. The pre-denaturation time should be determined according to the recommendations of each real-time cycler. If the optimal pre-denaturation time cannot be determined, the time should be set at 60 sec.

JAPAN

TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp

Table 2 The recommended pre-denaturation time on each real-time cyclers		
Real-time cycler	Pre-denaturation time	
High speed cycler (e.g. Applied Biosystems 7500Fast)	20 sec	
Capillary cycler (e.g. Roche LightCycler [™] 1.x, 2.0)	30 sec	
General real-time cyclers (Applied Biosystems 7700, 7500,	60 sec	
7900HT (normal block), Stratagene cyclers, BioFlux		
cyclers		

 Table 2
 The recommended pre-denaturation time on each real-time cyclers

^{*2} The following table shows the optimal denaturation times for each real-time cycler. If the optimal denaturation time cannot be determined, the time should be set at 15 sec.

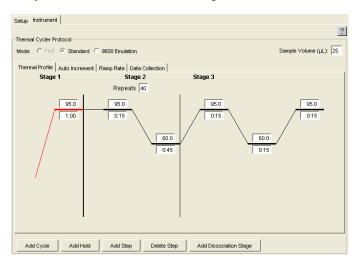
Table 3 The recommended denaturation time on each real-time cyclers		
Real-time cycler	Pre-denaturation time	
High speed cycler (e.g. Applied Biosystems 7500Fast) 3 sec		
Capillary cycler (e.g. Roche LightCycler [™] 1.x, 2.0) 5 sec		
General real-time cyclers (Applied Biosystems 7700, 7500,	15 sec	
7900HT (normal block), Stratagene cyclers, BioFlux		
cyclers		

^{*3} Insufficient amplification may be improved by decreasing the extension temperature, and non-specific amplification (e.g. abnormal shapes of the amplification curve at low template concentrations) may be reduced by increasing the extension temperature. The extension temperature should be set at 56-64°C.

^{*4} If the target size is smaller than 300 bp, the extension time can be set at 30 sec on almost all real-time cyclers. Instability of the amplification curve or variation of data from each well may be improved by setting the extension time at 45-60 sec. Some real-time cyclers or software need over 30 sec for the extension step. In these cases, the time should be set according to each instruction manual (e.g. Applied Biosystems 7000/73000: \geq 31 sec; Applied Biosystems 7500: \geq 35 sec.).

^{*5} The melting curve analysis should be performed according to the recommendations of each real-time cycler.

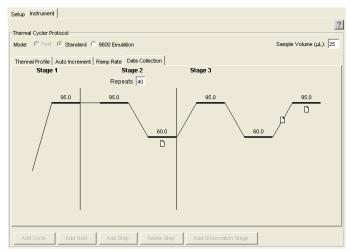
JAPAN


TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp **CHINA** TOYOBO Bio-Technology, CO., LTD. Tel(86)-21-58794900.4140

2-1. Real-time PCR conditions using Applied Biosystems 7900HT (Normal block type, software version 2.2.2)

The following is an example of a SYBR[®] Green I assay using Applied Biosystems 7900HT.

(1) The cycling parameters should be set according to the following "Thermal Cycler Protocol" window under the "Instrument" tab. When adding the melting curve analysis, click the "Add Dissociation Stage" button.



Notes:

- Appropriate sample volumes should be set.

 $- \ge 45$ sec is necessary for the extension step.

(2) Click the "Data collection" tab.

- (3) Insert the PCR plate
- (4) Start the program

JAPAN
TOYOBO CO., LTD.
Tel(81)-6-6348-3888
www.toyobo.co.jp/e/bio
tech_osaka@toyobo.jp

CHINA

TOYOBO Bio-Technology, CO., LTD. Tel(86)-21-58794900.4140

6

2-2. Real-time PCR conditions using Roche LightCycler 1.1

(Software version 3.5)

The following is an example of a SYBR[®] Green I assay using Roche LightCycler 1.1.

(1) The cycling parameters should be set according to the following window. Analysis and Acquisition mode of the initial denaturation step must be set at "None".

Cycle Program Data	Analysis Mode None
Cycles 1	Quantification Melting Curves
Temperature Targets	
Target Temperatur	e (°C)
Incubation Ti	me (hrs:min:sec)
Tem	perature Transition Rate (°C/s)
	Secondary Target Temperature (*C)
	r − Step Size (°C)
	Step Delay (cycles)
	Acquisition Mode
(115 \$ 30 \$ 20.00 \$ 0	DO D D NONE D
(Ins)	

(2) The cycling parameters should be set according to the following window. Analysis mode of the PCR step must be set at "Quantification". And Acquisition modes of 95°C and 60°C must be set at "None" and "Single", respectively.

Cycle Program Data	Analysis Mode None
Cycles 40	Quantification Melting Curves
Temperature Targets	
(Ins) 95 👙 5 🔮 20.00 👙 D	
(Ins) 60 \$ 30 \$ 20.00 \$ 0	\$ 0.0 \$ 0 \$ SINGLE \$ (Dei)
(hs)	

JAPAN

TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp

(3) [Melting curve analysis] The cycling parameters should be set according to the following window. The analysis mode must be set at "Melting curves". Acquisition modes of 95°C (first) and 65°C must be set at "Non". Acquisition mode of the second 95°C must be set at "CONT".

Cycle Progran	n Data	Analysis	Mode None
Cycles 1			Quantification Melting Curves
Temperature	Targets		
Tar	get Temperatur Incubation Ti	imè (hrs:min: nperature Tr Seconda	sec) ansition Rate (°C / s) ry Target Temperature (°C) p Size (°C) Step Delay (cycles) Acquisition Mode
(Ins) 95 ₿15	20.00	0.0	
(Ins) 65 \$15	20.00	₿0.0 ₿0	
(hs) 95 🗍 D	0.20	0.0	

(4) The cycling parameters should be set according to the following window. Analysis and Acquisition mode of the cooling step must be set at "Non".

Cycle Program Data Cycles 1	Analysis Mode None Quantification Melting Curves
Temperature Targets	
Target Temperature	
Incubation Tin	ne (hrs:min:sec)
Temi	perature Transition Rate (*C/s)
	-Secondary Target Temperature (°C) Step Size (°C)
	Step Delay (cycles)
	Acquisition Mode
(Ins) 40 👙 30 👙 20.00 👙 0	\$0.0 \$0 \$ NONE \$ (De)
Ins	

(5) Insert the capillaries in the carousel, and start the cycling program.

JAPAN TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp

2-3. 3-step cycle

In the event of the 2-step cycle failing, the following 3-step cycle may improve results. In the following cases, the 3-step cycle conditions may improve the result efficiently.

-The Tm of the primer is lower than 60°C.

-The target is longer than 300 bp.

-PCR efficiency is low.

<3-step cycle>	Temperature	Time	Ramp		
Pre-denaturation	95°C	$20-60 \text{ sec}^{*1}$.	Maximum		
Denaturation:	95°C	$1-15 \text{ sec}^{*1}$.	Maximum	•	
	55-65°C ^{*2}	5-30 sec ^{*3}	Maximum		40 cycles
Extension:	72°C	$30-60 \text{ sec}^{*4}$.			
(data collection should be set at the extension step)					
Melting / Dissociati	on Curve Analysis	*5			

^{*1} The denaturation step should be determined according to [5] 2.

- ^{*2} The annealing temperature should be set at primer's Tm-5°C. A higher annealing temperature may improve non-specific amplification.
- *3 The annealing time should be set at 5 sec (Fast cycler), 15 sec (Normal cycler). Shorter annealing times may reduce non-specific amplification. Longer annealing times (up to 30 sec) may increase the PCR efficiency when the efficiency is low.
- *4 Shorter targets (≤300 bp) require shorter extension times (≤30 sec). However, certain cyclers require >30 sec detection time at the extension step. An unstable signal may be improved by prolonging the extension time up to 40-60 sec. Also note that some cyclers cannot have an extension time of 30 sec (Applied Biosystems 7000, 7300: ≥ 31 sec, 7500: ≥35 sec)
- ^{*5} The melting curve analysis should be performed according to each cycler's recommendations.

JAPAN

TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp

[6] Related Protocol 1. cDNA synthesis

cDNA synthesized by various cDNA synthesis reagents can be used with THUNDERBIRDTM SYBR[®] qPCR Mix. However, cDNA synthesized by a reagent specialized for real-time PCR can increase sensitivity.

ReverTra Ace[®] qPCR RT Kit (Code No. FSQ-101) is a cDNA synthesis kit suitable for real-time PCR. Here, the protocol with ReverTra Ace[®] qPCR RT Kit is described. However, for the detailed protocol, please refer to the instruction manual of the kit.

(1) Denaturation of RNA

Incubate the RNA solution at 65°C for 5 min and then chill on ice.

Notes:

-This step can be omitted. But this step may increase the efficiency of the reverse transcription of RNA, which forms secondary structures.

-Do not add 5x RT Buffer and/or enzyme solution at this step.

(2) Preparation of the reaction solution

Reagent	Volume (amount)
Nuclease-free Water	X µl
5x RT Buffer	2 μl
Primer Mix	0.5 µl
Enzyme Mix	0.5 µl
RNA solution	<u>0.5 pg-1 μg</u>
Total	10 µl

(3) Reverse transcription reaction

-Incubate at 37°C for 15 min. <Reverse transcription>

-Heat at 98°C for 2 min. <Inactivation of the reverse transcriptase>

-Store at 4°C or -20°C.*

*This solution can be used in the real-time PCR reaction directly or after dilution.

Notes:

The above temperature conditions are optimized for ReverTra Ace® qPCR RT Kit.

JAPAN

TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp CHINA TOYOBO Bio-Technology, CO., LTD. Tel(86)-21-58794900.4140

10

[7] Troubleshooting

Symptom	Cause	Solution
Loss of linearity in the high cDNA/DNA concentration region.	Intercalation of SYBR [®] Green I into the template DNA.	Because SYBR [®] Green I is also intercalated into the template DNA, the base line tends to be higher when high concentration DNA samples are used. Diluted template should be used to obtain a correct Ct value.
Lost of linearity or lower signal in the low	The template DNA is insufficient. Adsorption of the DNA to the tube wall.	When the DNA/cDNA copy number is lower than 10 copies per reaction, the linearity of the reaction tends to be lost. The template concentration should be increased. The diluted DNA templates tend to be absorbed onto the tube wall. Dilution should be performed
DNA/cDNA concentration region.	Competition with primer dimer formation.	just prior to experiments. Dimer formation may reduce the amplification efficiency of the target, especially for reactions at low template concentration. The reaction condition should be optimized or the primer sequences should be changed.
Loss of linearity of the amplification carves.	Competition with non-specific amplification.	Non-specific amplification may reduce the amplification efficiency of the target. The reaction conditions should be optimized or the primer sequences should be changed.
The PCR efficiency is lower than 90% (slope: <-3.6)	Inappropriate cycling conditions. Degradation of the primers. The calculation of the PCR	Optimize the cycling conditions according to [5]. Fresh primer solution should be prepared. The Ct value on the linear region should be used
The PCR efficiency is higher than 110%.	efficiency is inappropriate. The calculation of the PCR efficiency is inappropriate.	to calculate PCR efficiency. The Ct value on the linear region should be used to calculate PCR efficiency.
Reproducibility is not good.	Poor purification of the template DNA	Low-purity DNA may contain PCR inhibitors. Re-purify the DNA samples.
	Absorption of the template DNA to the tube wall.	Diluted DNA templates tend to be absorbed onto the tube wall. Dilution of the template DNA/cDNA should be performed just prior to experiments.
	Plasmid DNA or PCR product is used as a template.	In general, plasmid DNA or PCR product is used at low concentration. Diluted DNA templates tend to be absorbed onto the tube wall. Dilution of the template DNA/cDNA should be performed just prior to experiments. Dilution with a carrier nucleic acid solution (Yeast RNA) is also effective in improving linearity.
	Inappropriate thermal conditions. Low purity of the primers	Optimize the thermal conditions according to [5]. Different lots of primers may show different results. When the lot is changed, prior testing of the primer should be performed.

JAPAN

TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp CHINA TOYOBO Bio-Technology, CO., LTD. Tel(86)-21-58794900.4140

11

Symptom	Cause	Solution	
Amplification from the non-template control (NTC).	Formation of primer dimer.	On the melting curve analysis, a peak at a temperature lower than that of the target peak suggests a primer dimer. The PCR cycle should be optimized according to [4] (2). If the result is not improved, the following should be performed:change the primer sequence and/or change the purification grade of the primer (HPLC grade)	
	Contamination or carry over of the PCR products.	When the no-template control generates a peak at the same melting temperature as the target on the melting curve analysis, the amplification is caused by a carry-over or contamination. Use fresh reagents.	
Low amplification curve signal / Unstable amplification	Excessive amount of ROX reference dye.	Excessive amount of ROX reference dye may cause low signal. 50x ROX reference dye should be used according to [5] Table 1.	
curve signal.	Inappropriate settings of fluorescence measurement Insufficient reaction volume.	Settings should be confirmed according to the instruction manual of each detector. Low reaction volume may cause an unstable signal. Increase the reaction volume.	
Detection of multiple Non-specific amplification. peaks on the melting curve analysis		Optimize the reaction conditions. If the result is not improved, the primer sequence should be changed.	
	Formation of primer dimer.	On the melting curve analysis, a peak at a temperature lower than that of the target peak suggests a primer dimer. The PCR cycle should be optimized according to [4] (2). If the result is not improved, the following action should be performed:change the primer sequence and/or change the purification grade of the primer (HPLC grade)	

JAPAN

TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp CHINA TOYOBO Bio-Technology, CO., LTD. Tel(86)-21-58794900.4140

12

[8] Related products

Product name	Package	Code No.
High efficient real-time PCR master mix	200	QPS-201
THUNDERBIRD [™] Probe qPCR Mix	reactions	
High efficient cDNA synthesis kit for real-time PCR	200	FSQ-101
ReverTra Ace [®] qPCR RT Kit	reactions	
One-step Real-time PCR master mix for probe assay	0.5 mL x 2	QRT-101T
RNA-directTM Realtime PCR Master Mix	0.5 mL x 5	QRT-101
One-step Real-time PCR master mix for SYBR® Green assay	0.5 mL x 2	QRT-201T
RNA-direct TM SYBR [®] Realtime PCR Master Mix	0.5 mL x 5	QRT-201

JAPAN

TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp CHINA TOYOBO Bio-Technology, CO., LTD. Tel(86)-21-58794900.4140

NOTICE TO PURCHASER: LIMITED LICENSE

Use of this product is covered by one or more of the following US patents and corresponding patent claims outside the US: 5,079,352, 5,789,224, 5,618,711, 6,127,155, 5,677,152, 5,773,258, 5,407,800, 5,322,770, 5,310,652, 5,994,056, 6,171,785, and claims outside the US corresponding to US Patent No. 4,889,818. The purchase of this product includes a limited, non-transferable immunity from suit under the foregoing patent claims for using only this amount of product for the purchaser's own internal research. No right under any other patent claim (such as apparatus or system claims in US Patent No. 6,814,934) and no right to perform commercial services of any kind, including without limitation reporting the results of purchaser's activities for a fee or other commercial consideration, is conveyed expressly, by implication, or by estoppel. This product is for research use only. Diagnostic uses under Roche patents require a separate license from Roche. Further information on purchasing licenses may be obtained by contacting the Director of Licensing, Applied Biosystems, 850 Lincoln Center Drive, Foster City, California 94404, USA.

JAPAN

TOYOBO CO., LTD. Tel(81)-6-6348-3888 www.toyobo.co.jp/e/bio tech_osaka@toyobo.jp CHINA TOYOBO Bio-Technology, CO., LTD. Tel(86)-21-58794900.4140