Detect extracellular vesicles such as exosomes quickly and easily

Exorapid-qIC[®] Immunochromatographic kit/for extracellular vesicles

"Exorapid-qIC[®] Immunochromatographic kit for extracellular vesicles" can detect extracellular vesicles (EVs) such as exosomes, microvesicles, apoptotic bodies, and oncosomes for research. This kit was jointly developed with Shimadzu Corporation and uses "gold nanoplates" developed by Dai Nippon Toryo Co., Ltd.

Features of EVs

- 1. Intercellular communication
- 2. Regulation of immune responses

EVs have such diverse functions.

Thus, they are being applied in

- 3. Tumor progression and metastasis
- 4. Regenerative medicine
- 5. Use as a biomarkers

various research fields.

Vesicles secreted from cells, etc.

Contains characteristic surface proteins (Tetraspanins: CD9, CD63, CD81)

Features

- This immunochromatographic can detect extracellular vesicles (EVs).
- Blood (serum, plasma) and cell culture supernatant can be used.
- The test time is approximately 45 minutes (two-stage detection), for rapid evaluation.

Detection mechanism

Kit components

- ① Immunochromatographic test strip
- ② Gold nanoplate labeled antibody [lyophilized product]
- ③ Standard substance [lyophilized product]
- 4 Dilution solution
- ⁽⁵⁾ Washing solution
- 6 Assay microplate 96 wells

(a) Antibodies immobilized on the test paper capture the EVs in sample.

(b) Gold nanoplate labeled antibody binds to the EVs immobilized on the test strip in step (a).

(c) A blue lines is visually confirmed by gold nanoplate labeled antibodies bound to EVs.

Lineup

Product name	Product number	Size
Exorapid-qIC [®] Immunochromatographic Kit for Extracellular Vesicles (CD9)	DNT-EXO-K01	1 KIT (40test)
Exorapid-qIC [®] Immunochromatographic Kit for Extracellular Vesicles (CD63)	DNT-EXO-K02	1 KIT (40test)
Exorapid-qIC [®] Immunochromatographic Kit for Extracellular Vesicles (CD81)	DNT-EXO-K03	1 KIT (40test)
Exorapid-qIC [®] Immunochromatographic Kit for Extracellular Vesicles (CD9, CD63,CD81 set)	DNT-EXO-K123	1 KIT (6test×3)

Exorapid-qIC[®] Immunochromatographic kit for extracellular vesicles

Comparison with conventional analysis methods (According to our survey)

	IC (Exorapid-qIC®)	ELISA	WB	NTA	FCM
Test time	Short (0.75 hours)	Short to mid. (3 hours)	Long (5-8 hours)	Short (1 hour)	Short (1 hour)
Operability	Very good	Good	Neutral	Good	Good
Throughput	High	Very high	High	Neutral	Neutral
Detection sensitivity	High	High to very high	High	Very high	Very high
Accuracy	Neutral	High	High	Neutral	Very high
Initial cost	Very low	Low	Low	High	High
Analyzer	Unnecessary	Necessary	Necessary	Necessary	Necessary

ELISA : Enzyme-linked immunosorbent assay NTA : Nanoparticle Tracking Analysis

WB : Western blotting FCM : Flow cytometry

Application Data

Calibration curve

2

AF reduced the concentration of contaminating proteins, improving the detection intensity of CD9 and decreasing the detection intensity of CD63 and CD81. Although there will be differences in EVs recovered with each purification method, nonspecific detection is expected to be reduced with purification methods that reduce protein concentration

3

Evaluation with mesenchymal stem cell (MSC)-derived exosomes

①Relationship between particle concentration and detection intensity

We evaluated the cell culture supernatants of adipose-derived and dental pulp-derived MSCs. Hence the EVs concentration was low, they were concentrated by ultrafiltration.

*Particle concentration: 14.6×10¹⁰particles/mL

- Using a CD63 kit, EVs in the culture supernatant of adipose-derived and dental pulp-derived MSCs were detected in a concentration-dependent manner.

- EVs containing both markers (CD9 and CD63) were detected in the culture supernatant of dental pulp-derived MSCs.

②Combination with purification kits

EVs in the culture supernatant of adipose-derived MSCs were concentrated and purified using a commercially available kit and detected by Exorapid-qIC[®].

Purification method	Requierd time [hour]	Cost	Particle concentration [x10 ¹⁰ particles/mL]	Recovered volume (Per 1mL of stock sample) [µL]	Recovered particle (Per 1mL of stock sample) [x10 ¹⁰ particles]	Protein concentration (µg/mL)
1) Unpurified	—	—	2.5	1,000	2.5	727
②Affinity purification	2~3	High	6.9	50	0.35	ND
③Ultrafiltration + EV-Capture	1.5	Low	8.7	60	0.52	39

EV-Capture[™] is a product that utilizes the negative charge of EVs to separate and collect them using a spin column

- Even samples with low concentrations of EVs can be detected in a short time in combination with concentration and purification methods.
- Combination with ultrafiltration and EV-Capture™ enables "quick," "easy," and "inexpensive" purification and concentration.

EV-Capture[™]

Product name	No.	Size
EV-Capture [™] EV Purification Spin Column Kit	EVP01-010	1 kit(10 prep)

Contact address If you have any questions, please feel free to contact us at the address below !

About Sales information

2792 Loker Ave West, Suite 101 Carlsbad, CA 9200, USA URL: www.cosumobiousa.com Phone/FAX:(+1)760-431-4600 Email: info@cosumobiousa.com

About technical information

Minami-Senba 1CHOME, Chuo-ku, Osakashi, Osaka, 542-0081, Japan URL: https://www.dnt.co.jp Email: dnt10023120@star.dnt.co.jp