

KB03016 MALONDIALDEHYDE -TBARS Assay Kit

96 well plate 100/200/400 tests

Table of contents

1.	General information	1
2.	Technical specifications	2
3.	Materials and storage	3
4.	Introduction	4
5.	Assay principle	5
6.	Assay preparation	6
7.	Sample preparation	8
8.	Assay protocol	9
9.	Data analysis	11
10.	Troubleshooting	13
11.	Additional information	15
12.	Related products	15
13.	Warranties and limitation of liability	16

1. General information

PRECAUTIONS

Please read this manual carefully before beginning the assay.

This product is designed for **research use only**. It is not approved for human or animal use or clinical diagnosis. All chemicals should be handled with care and in accordance with laboratory safety practices. It is recommended to use basic Personal Protective Equipment.

Do not use after the expiration date stated on the packaging.

Do not mix or substitute reagents or materials from other kit batches or vendors.

For the **material safety data sheet** (MSDS) please contact us at **info@bioquochem.com**

TECHNICAL RECOMMENDATIONS

Store reagents as indicated in **Materials and storage** section.

Be sure to keep the bottle capped when not in use.

Let the components reach room temperature (RT) before use.

Immediately before use, gently invert and rotate reagent bottles several times to mix the contents thoroughly.

Avoid foaming or bubbles when mixing or reconstituting components.

Avoid cross contamination of samples or reagents by changing pipette tips between sample, standard and reagent additions.

Be sure to use the optimal microplate for the assay. Flat bottom transparent microplates for UV/VIS applications, and black microplates for fluorescence measurements.

2. Technical specifications

Available sizes

100/200/400 tests

O Required sample volume

100 µL/test

Compatible samples

Biological fluids, cell lysates and tissue homogenates

Type of detection

Colorimetric (532 nm)/ Fluorimetric (Ex: 532/ Em: 553 nm)

3. Materials and storage

MATERIALS SUPPLIED

ltem	No. Tests	Units	Storage
	100	1	
Reagent A	200	2	4°C
	400	4	
	100	1	
Reagent B	200	1	4 °C
	400	2	
	100	2	
Reagent C	200	3	4 °C
	400	6	
	100	1	
Reagent D	200	2	4 °C
	400	4	
	100	1	
Reagent E	200	2	4 °C
	400	4	
	100	1	
Standard	200	2	4 °C
	400	4	
	100	1	
Transparent 96-Well Microplate	200	2	RT
	400	4	

MATERIALS NEEDED BUT NOT SUPPLIED

- o Double distilled water (ddH2O) as Milli-Q Ultrapure Water.
- o Labware materials (micropipettes, tubes, stirring/mixing equipment)
- Microtube heater
- Microcentrifuge
- Microplate reader equipped with filter for OD 532 nm (colorimetric) or Ex: 532 nm/ Em: 553 nm (Fluorimetric)

STORAGE CONDITIONS

On receipt, store kit components as indicated above. Under these conditions, the reagents are stable in the original packaging until the expiration date indicated on the outside of the box. Prepare a fresh set of standards for every use.

4. Introduction

Lipid peroxidation (LPO) is a well-known example of oxidative damage in cell membranes, lipoproteins, and other lipid-containing molecules in conditions with oxidative stress. Lipid peroxidation may contribute to the pathology of many diseases including cardiovascular diseases, cancer, and neurodegenerative diseases.

Non-enzymatic LPO is a complex process whereby polyunsaturated lipids are oxidized via free-radical intermediates to a variety of products. Briefly, unsaturated fatty acids react with molecular oxygen via a free radical mechanism producing hydroperoxides. These primary products of lipid oxidation are highly unstable and rapidly decompose resulting in the formation of secondary compounds such as aldehydes, ketones, alkanes, carboxylic acids, and polymerization products. These secondary products are also highly reactive with other cellular components /extracellular matrix and can be used as biomarkers for LPO.

Among reactive aldehydes, malondialdehyde (MDA) has been extensively used as an index of LPO.

BQC MDA-TBARS Assay Kit is an easy, quick and reproducible test to measure lipid peroxidation in biological samples.

5. Assay principle

BQC MDA-TBARS Assay Kit measures MDA as an index of lipid peroxidation. This Assay Kit is based on the reaction between MDA and thiobarbituric acid (TBA). The MDA-TBA adduct formed under acidic conditions and high temperature (90-100°C) can be determined colorimetrically (532 nm) or fluorimetrically ($\lambda_{\rm Ex}$: 532 nm/ $\lambda_{\rm Em}$: 553 nm).

MDA concentration in a sample is determined from a calibration curve using the MDA precursor 1,1,3,3-Tetramethoxypropane (TMOP) as standard.

MDA TBA Adduct
$$\lambda = 532 \text{ nm}$$

Principle of MDA-TBARS Assay Kit

6. Assay preparation

REAGENT PREPARATION

All assay reagents not listed below are ready to use as supplied. Allow the reagents to reach room temperature before use.

R.A. Working Solution: Add 12.5 mL of Reagent B in each bottle of Reagent A. Mix well and **let stand at room temperature for 5 minutes**.

<u>Colorimetric Standard Solution:</u> In a microcentrifuge tube, dilute 50 μ L of the Standard solution with 950 μ L of ddH₂O. Use this diluted Standard solution (50 μ M) to prepare the standard curve for the colorimetric assay.

Fluorimetric Standard Solution: In a microcentrifuge tube, dilute 5 μ L of the Standard solution with 995 μ L of ddH₂O. Use this diluted Standard solution (5 μ M) to prepare the standard curve for the fluorometric assay.

STANDARD CALIBRATION

Prepare 1,1,3,3-Tetramethoxypropane (TMOP) standards for the calibration curve from the appropriate diluted Standard solution according to the following Table. Prepare the standards immediately prior to each assay. Vortex tubes thoroughly. Discard standard solutions after use.

Standard	Diluted Standard Solution (µL)	ddH ₂ O (μL)	Standard (µM TMOP) Colorimetric	Standard (µM TMOP) Fluorimetric
Std 1 (Reagent Blank)	0	500	0	0
Std 2	5	495	0.5	0.05
Std 3	10	490	1	0.10
Std 4	25	475	2.5	0.25
Std 5	50	450	5	0.50
Std 6	100	400	10	1.0
Std 7	250	250	25	2.5
Std 8	500	0	50	5.0

PLATE SET UP

BQC recommends running the standards and samples at least in duplicate (triplicate recommended). There is no specific pattern for using the wells on the plate. A proposed layout of standards (Std) and samples (S) to be measured in duplicate is shown below.

• NOTE: If sample blanks are included in the assay, it is necessary to reserve some wells of the plate for these blanks

Q	1	2	3	4	5	6	7	8	9	10	11	12
Α	Std 1	Std 1	S 1	S1	S9	S9	S17	S17	S25	S25	\$33	S33
В	Std 2	Std 2	S2	\$2	\$10	\$10	\$18	\$18	\$26	S26	\$34	S34
С	Std 3	Std 3	S3	\$3	S11	S11	S19	S19	S27	S27	\$35	\$35
D	Std 4	Std 4	S4	S4	\$12	\$12	\$20	\$20	\$28	S28	\$36	\$36
E	Std 5	Std 5	S5	\$5	\$13	\$13	S21	S21	S29	S29	S37	S37
F	Std 6	Std 6	S6	S6	S14	\$14	S22	S22	\$30	S30	\$38	S38
G	Std 7	Std 7	S7	S7	S15	\$15	\$23	\$23	S31	S31	S39	S39
Н	Std 8	Std 8	S8	S8	\$16	\$16	\$24	\$24	\$32	S32	\$40	\$40

Example of plate layout for the MDA-TBARS Assay Kit

7. Sample preparation

The following sample preparation protocols are intended as a guide only. The optimal conditions for sample preparation must be determined by the end user. It is recommended to use fresh samples. If it is not possible, aliquot and store samples appropriately with minimal freeze/thawing.

MDA-TBARS Assay Kit can be used to determine lipid peroxidation in biological fluids, tissue homogenates and cell lysates.

Biological samples. Biological samples like serum, plasma or urine, can be directly measured. EDTA and heparin are recommended as anticoagulants for plasma preparation

Tissue Homogenates. Dissect the tissue of interest and place it on a homogenizer tube with an appropriate amount of an ice-cold buffer. Homogenize the tissue and then centrifuge the homogenate at 10000 x g for 15 minutes at 4 °C. Collect the supernatant.

Cell culture. Wash cells with ice-cold buffer before lysis. Lyse cells by sonication or freeze-thaw cycles. Centrifuge cell lysis suspension at 10000 x g for 15 minutes at 4 °C and collect the supernatant. It is recommended to use lysates of approximately $2 \cdot 10^7$ cells.

Reagents and materials required for sample preparation are not supplied with the kit. Before doing sample preparation, consider the volume of sample required per test; see **Technical specifications** section.

Make sure that interfering substances present in the sample do not give a significant background. Run proper blanks as necessary (e.g. sample blank should be always evaluated when working with highly colored samples). It is recommended to assay different sample dilutions to ensure the values fall within the standard curve.

8. Assay protocol

Prepare and mix all reagents thoroughly before use. Each standard, sample or blank should be assayed at least in duplicate.

1 Add 100 µL of standard or sample in 1.5 mL microcentrifuge tubes (not included) Add 25 µL of Reagent D to each vial 2 3 Incubate the mixture for 30 minutes at 60 °C Add 100 µL of Reagent E to each vial 5 Add 50 µL of Reagent C to each vial Centrifuge the mixture at 10000 rpm for 6 10 minutes at RT 7 Carefully **transfer 200 µL** of the **supernatant** from each tube to a clean vial

Add 100 µL of R.A. Working Solution to each vial.

8

Incubate the mixture for 60 minutes at 90 °C

Cool the vials with ice to stop the reaction

11

Set up the plate design

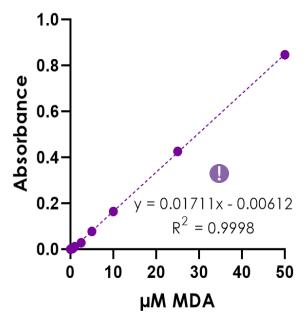
12

Transfer 150 μL of the liquid from each tube into a 96-well plate

13

<u>Colorimetric Assay:</u> Read the **absorbance** of all wells at **532 nm** in end point mode at **RT**

<u>Fluorometric Assay:</u> Read the fluorescence of all wells at an excitation wavelength of **532 nm** and an emission wavelength of **553 nm** in end point mode at **RT**


If you need to **adapt this kit** for another form of the assay (for example cuvette), **contact us at <u>info@bioquochem.com</u>**

9. Data analysis

ANALYSIS OF THE STANDARDS

- Calculate the average absorbance/fluorescence of the standards for each assay.
- Subtract the average absorbance/ fluorescence of the reagent blank (Std 1) from the average absorbance/ fluorescence of the standards to obtain the blank-corrected absorbance or fluorescence of the standards.
- Create a standard curve by plotting the blank-corrected absorbance/fluorescence of the standards as a function of the standard concentration (see STANDARD CALIBRATION section). A typical standard curve (y=slope·x ± intercept) for this assay is shown below.

Standard curve for MDA-TBARS Colorimetric Assay Kit

This standard curve is an example of the data typically obtained with this kit. DO NOT USE this standard curve to calculate the MDA content of your samples. A new standard curve must be performed by the end user.

ANALYSIS OF THE SAMPLES

- Calculate the average absorbance/ fluorescence of the samples.
- Subtract the average absorbance/ fluorescence of the reagent blank (Std 1) from the average absorbance of each sample to obtain the blank-corrected absorbance (A_s) or fluorescence (F_s) of the samples.
- Calculate the MDA concentration of the samples using the following equation. Slope and intercept values are obtained from the standard curve.

MDA (
$$\mu$$
M) = $\left(\frac{A_S/F_S - \text{intercept}}{\text{slope}}\right)$

When working with diluted samples the concentration values obtained must be multiplied by the dilution factor to obtain the MDA content of the undiluted sample.

10. Troubleshooting

This troubleshooting table provides potential sources and solutions for common problems observed with BQC Assay Kits. **The problems listed below could occur when using any BQC Assay Kit**. They are not specific for this assay kit.

Problem	Possible Cause	Recommended Solution		
	Plate read at incorrect wavelength	Check the wavelength used in the assay		
Wells have color but there is no reading	Incorrect microplate	Use the correct microplate for your application UV/Vis: transparent Fluorescence: black wells/transparent bottom		
	Pipetting errors in preparation of standards	Avoid pipetting small volumes (<5 µL) Be careful not to splash from well to well		
	Air bubbles formed in well(s)	Use reverse pipetting technique		
Standard readings do not	Standard stock is at incorrect concentration	Always refer to dilutions described in Assay preparation		
follow a linear pattern	Improperly thawed reagents	Thaw all components completely and mix well before use		
	Use of improperly stored reagents	Store the components appropriately Use fresh components from the standard curve		
	Incorrect incubation times or temperatures	Refer to Assay protocol		
Dispersion of standard and sample	Pipetting errors	Avoid pipetting small volumes (<5 µL) Be careful not to splash from well to well		
readings	Air bubbles formed in well(s)	Use reverse pipetting technique		

Problem	Possible Cause	Recommended Solution
	Samples contain interfering substances	Dilute sample further (if possible)
Sample erratic	Inappropriately stored samples or samples used after multiple freeze-thaw cycles	Use fresh samples or store appropriately until use
values	Samples not deproteinized	Use an appropriate deproteinization protocol
	Cells/Tissue samples not homogenized completely	Repeat the sample homogenization
	Inappropriate sample dilution buffer	Refer to Assay preparation
Sample reading fall outside the detection range	Samples are too diluted/concentrated No analyte/activity is observed in the sample	Re-assay using different sample dilutions

STILL HAVING PROBLEMS?

Contact BQC if you have any further questions, our team will be pleased to help you:

Phone	+ 34 985 26 92 92
E-mail	info@bioquochem.com
Business hours	Monday-Thursday: 8.30 to 17.00 (CEST) Friday: 8.00 to 15.00 (CEST)

11. Additional information

MDA-TBARS Assay Kit allows MDA determination in a wide range of concentrations (0.5 – 50 μ M colorimetric/ 0.05-5.0 fluorimetric) and shows a good precision (< 5 %).

Sugars, peptides, water-soluble proteins and colorants have been reported to interfere with this assay.

If unexpected results are obtained running your samples, please contact us at info@bioquochem.com

12. Related products

More products available on bioquochem.com

Reference	Product
KB03007	Thiol Quantification Assay Kit
KB03012	Catalase Activity Assay Kit
KB03002	LPO Assay Kit

13. Warranties and limitation of liability

BQC shall not in any event be liable for incidental, consequential or special damages of any kind resulting from any use or failure of the products, even if BQC has been advised of the possibility of such damage including, without limitation, liability for loss of use, loss of work in progress, downtime, loss of revenue or profits, failure to realize savings, loss of products of buyer or other use or any liability of buyer to a third party on account of such loss, or for any labor or any other expense, damage or loss occasioned by such product including personal injury or property damage is caused by BQC's gross negligence. Any and all liability of BQC hereunder shall be limited to the amounts paid by the buyer for the product.

Buyer's exclusive remedy and BQC's sole liability hereunder shall be limited to a refund of the purchase price, or the replacement of all material that does not meet our specifications.

Said refund or replacement is conditioned on buyer giving written notice to BQC within 30 days of shipment.

Expiration date: 1 year from the date of fabrication. Expiration date is indicated on the outside of the box.

For further details, please refer to our website bioquochem.com

Vivero Ciencias de la Salud C. Colegio Santo Domingo de Guzmán 33011 Oviedo, Asturias, Spain

www.bioquochem.com